Particle Physics after the discovery of the Higgs boson

R. Barbieri

From the Vacuum to the Universe
Kitzbuhel, June 26-July 01, 2016

I. The SM Lagrangian (since 1973 in its full content)

$$
\begin{aligned}
\mathcal{L}_{\sim S M}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+i \bar{\psi} \not D \psi & & (\sim 1975-2000) \\
& +\left|D_{\mu} h\right|^{2}-V(h) & & (\sim 1990-2012) \\
& +\psi_{i} \lambda_{i j} \psi_{j} h+h . c . & & (\sim 2000-\text { now })
\end{aligned}
$$

In () the approximate dates of their experimental shining (at different levels)

The synthetic nature of Particle Physics

The particles of the Standard Model (SM)

$$
h(2012)
$$

$$
i=
$$

$J=1$			
$G_{\mu}^{a}(1978)^{*}$	$A_{\mu}(1905)$	$W_{\mu}(1984)$	$Z_{\mu}(1984)$

A complete story?
A single scalar?

Problems of (questions for) the SM

0. Which rationale for matter quantum numbers?
$\left|Q_{p}+Q_{e}\right|<10^{-21} e$
1. Phenomena unaccounted for
neutrino masses matter-antimatter asymmetry Dark matter inflation?

$$
\text { 2. Why } \theta \lesssim 10^{-10} \text { ? } \quad \theta G_{\mu \nu} \tilde{G}^{\mu \nu}
$$

Axions

3. $\mathcal{O}_{i}: d\left(\mathcal{O}_{i}\right) \leq 4$ only?
neutrino masses Are the protons forever? Gravity
4. Lack of calculability (a euphemism)
the hierarchy problem
the flavour paradox

The SM as an emerging iceberg

What there is under the water? (out of a conversation with Lawrence Hall)

BSM in the multi TeV region...

BSM in the multi TeV region...

... or the SM extended up to $\mathrm{E} \gg \mathrm{TeVs}$?

Problems of (questions for) the SM

0. Which rationale for matter quantum numbers?

$$
\left|Q_{p}+Q_{e}\right|<10^{-21} e
$$

1. Phenomena unaccounted for
neutrino masses matter-antimatter asymmetry
Dark matter inflation?

> 2. Why $\theta \lesssim 10^{-10}$?
> Axions
> 3. $\mathcal{O}_{i}: d\left(\mathcal{O}_{i}\right) \leq 4$ only?
$\theta G_{\mu \nu} \tilde{G}^{\mu \nu}$
neutrino masses Are the protons forever? Gravity
4. Lack of calculability (a euphemism)
the hierarchy problem
the flavour paradox

1 Key neutrino measurements

m_{β} beta-decay endpoint
$m_{\beta \beta}$ neutrino-less $\beta \beta$ decay
$\Sigma=m_{1}+m_{2}+m_{3}$ large scale structures

2σ bounds
from current knowledge of oscillations only

Lisi et al
—— normal hierarchy
__ inverted hierarchy

Σm_{ν} determination

Palanque-Delabroullle et al 2015
(a recent result from KamLAND) $m_{\beta \beta}<0.06 \div 0.16 \mathrm{eV}$
(9) ${ }^{0.16}{ }^{0.18} E_{0}$

- Determination with future large-scale structure observations (Euclid) at $2-5 \sigma$ depending on control of (mildy) non-linear physics

Power spectrum $P(k) / P_{\text {massless } \nu}(k)$

- Not independent on "priors" but still highly significant

2. 2. Why $\theta \lesssim 10^{-10}$? $\theta G_{\mu \nu} \tilde{G}^{\mu \nu}$

How do we know that $\theta \lesssim 10^{-10}$?
$\theta G_{\mu \nu} \tilde{G}^{\mu \nu}$ is T-odd and (almost) the only source of T-violation in the SM

$$
\begin{aligned}
& \left|\overrightarrow{\mu_{N}}\right|=2 \cdot 10^{-14} \mathrm{e} \cdot \mathrm{~cm} \\
& \left|\vec{d}_{N}\right| \approx \theta \cdot 10^{-15} \mathrm{e} \cdot \mathrm{~cm} \\
& \left|\overrightarrow{d_{N}}\right|_{\text {exp }}<3 \cdot 10^{-26} \mathrm{e} \cdot \mathrm{~cm}
\end{aligned}
$$

\Rightarrow Make θ a dynamical field forced in its cosmological history to relax to 0 (almost) and (possibly) appear as DM

QCD Axions in cosmology

$$
m_{a} f_{a} \approx 10^{-4} \mathrm{eV} \cdot 10^{11} \mathrm{GeV}
$$

(Axion Like Particles: m and f unrelated)

The dynamical field, a, is the "axion"

and is very intensively searched for
(with the most interesting region still unaccessible)

The classic search

$$
\mathcal{L}_{a \gamma \gamma}=-\left(\frac{\alpha}{\pi} \frac{g_{\gamma}}{f_{a}}\right) a \vec{E} \cdot \vec{B}=-g_{a \gamma \gamma} a \vec{E} \cdot \vec{B}
$$

Not easy to explore the most relevant region

$10^{-5} \lesssim m_{a} / e V \lesssim 10^{-3}$

Rybka ADMX

The coupling of the axion to spin

$$
L=\bar{\psi}(x)\left(i \hbar \phi_{x}-m c\right) \psi(x)-a(x) \bar{\psi}(x)\left(g_{s}+i g_{p} \gamma_{5}\right) \psi(x)
$$

$$
\begin{gathered}
g_{p} \approx \frac{m}{f_{a}} \quad\left(g_{s}=10^{-(12 \div 17)} g_{p} \frac{G e V}{m}\right) \\
\mathrm{NRL}:-\hbar \frac{\partial \phi}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+g_{s} c a-\left(\frac{g_{p} \hbar}{2 m} \boldsymbol{\sigma} \cdot \nabla a\right)\right] \phi \\
\gamma \boldsymbol{B}_{e f f} \cdot \boldsymbol{\sigma} \\
\mathbf{B}_{e f f}=\frac{g_{p}}{2 e}\left(\frac{n_{a} \hbar}{m_{a} c}\right)^{1 / 2} \boldsymbol{p}_{E} \sin \left(\frac{p^{0} c t-\boldsymbol{p}_{E} \cdot \boldsymbol{x}}{\hbar}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{B}_{e f f}=10^{-22}\left(\frac{m_{a}}{10^{-4} \mathrm{eV}}\right) T \quad \frac{\omega_{a}}{2 \pi}=24\left(\frac{m_{a}}{10^{-4} \mathrm{eV}}\right) G H z \\
\lambda_{d} \simeq h /\left(m_{a} v_{a}\right) \simeq 13.8\left(10^{-4} \mathrm{eV} / m_{a}\right) \mathrm{m} \quad \Delta \omega_{a} / \omega_{a} \simeq 5.2 \times 10^{-7} \\
<\boldsymbol{p}_{E}>=m_{a}\left(\boldsymbol{v}_{S}+\boldsymbol{v}_{O}+\boldsymbol{v}_{R}\right)
\end{gathered}
$$

Proposed experiments using NMR/EMR

CASPEr axion wind/NMR limited in frequency (mass) but size of the effect OK

$$
\begin{gathered}
\left(m_{a} / e V=10^{-7}, \quad \tau=0.1 \mathrm{sec}\right) \\
B_{e f f} / T \approx 10^{-22} \quad M_{T} / T \approx 10^{-19}
\end{gathered}
$$

static source NMR not limited in frequency but size of the effect smaller

$$
\begin{aligned}
& \left(m_{a} / e V=10^{-4}, \tau=0.1 s e c\right) \\
& B_{e f f} / T \lesssim 10^{-23} \quad M_{T} / T \lesssim 10^{-20}
\end{aligned}
$$

QUAX axion wind/EMR frequency OK

$$
\begin{gathered}
\left(m_{a} / e V=10^{-4}, \quad \tau=10^{-6} s e c\right) \\
B_{e f f} / T \approx 10^{-22} \quad M_{T} / T \approx 10^{-21}
\end{gathered}
$$

The "hierarchy" problem

can we calculate the Higgs mass? NOT in the SM
If we try: $\quad V(h)=m^{2}(\alpha, \beta)|h|^{2}+\lambda|h|^{4}$

To get <h> = 175 GeV , as observed, we have to live very very close to the critical line

But we don't have knobs!

The hierarchy problem, once again

Can we compute the Higgs mass/vev in terms of some fundamental dynamics?

NOT in the SM

$$
\delta m_{h}^{2}=\frac{3 y_{t}^{2}}{4 \pi^{2}} \Lambda_{t}^{2}-\frac{9 g^{2}}{32 \pi^{2}} \Lambda_{g}^{2}-\frac{3 g^{\prime 2}}{32 \pi^{2}} \Lambda_{g^{\prime}}^{2}+\ldots
$$

$\Lambda_{t} \lesssim 0.4 \sqrt{\Delta} \mathrm{TeV} \quad \Lambda_{g} \lesssim 1.1 \sqrt{\Delta} \mathrm{TeV} \quad \Lambda_{g^{\prime}} \lesssim 3.7 \sqrt{\Delta} \mathrm{TeV}$
$1 / \Delta=$ amount of tuning
\Rightarrow Look for a top "partner" (coloured, S=0 or $1 / 2$) with a mass not far from 1 TeV

Are there any "strictly natural" theory compatible with current data?

- Not anymore
- Searching for "top partners" remains the key
- However, if one is willing to accept a doubling of the SM ("Twin Higgs") can conceive a situation like this one

Chacko, Goh, Harnik 2005

$$
v \longrightarrow f \quad \Delta_{v / f}=(f / v)^{2}
$$

Precision can be the only signal

 generic of a composite (Twin) Higgs

Higgs precision

EWPT

B, Hall, Gregoire 2005

A problem for twin Higgs

Where is the twin radiation: $\tilde{\nu}, \tilde{\gamma}$?

Rossi et al 2015
Need a reheating of the SM sector below $T_{\text {dec }}=1 \div 5 \mathrm{GeV}$ or some suitable Z_{2} breaking

4 The flavour paradox $\lambda_{i j} \Psi_{i} \Psi_{j} h$

$$
\lambda
$$

$$
m_{i}=\lambda_{i}<h>
$$

a piece of physical reality since 2012 (at least)
as opposed to:
?!?!?

Not easy to improve without observed deviations from the SM

A deviation from the SM in flavour, finally?

Tension with SM at 3.9σ

$B \rightarrow D^{(*)} T V$

A deviation from the SM in flavour, finally?

$$
B \rightarrow D^{*} \tau \nu \quad(b \rightarrow c+\tau+\nu)
$$

P. Goldenzwieg, 2016

An "Extreme Flavour" experiment?

$$
\text { Vagnoni - SNS, 7-10 Dec } 2014
$$

- Currently planned experiments at the HL-LHC will only exploit a small fraction of the huge rate of heavyflavoured hadrons produced
- ATLAS/CMS: full LHC integrated luminosity of $3000 \mathrm{fb}^{-1}$, but limited efficiency due to lepton high p_{T} requirements
- LHCb: high efficiency, also on charm events and hadronic final states, but limited in luminosity, $50 \mathrm{fb}^{-1}$ vs $3000 \mathrm{fb}^{-1}$
- Would an experiment capable of exploiting the full HLLHC luminosity for flavour physics be conceivable?
- Aiming at collecting O(100) times the LHCb upgrade luminosity $\rightarrow 10^{14} \mathrm{~b}$ and $10^{15} \mathrm{c}$ hadrons in acceptance at $\mathrm{L}=10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

$$
\begin{aligned}
& \text { Motivation: test CKM (FCNC loops) } \\
& \text { from } \simeq 20 \% \text { to } \lesssim 1 \%
\end{aligned}
$$

Lepton Flavour Violation

Motivation: extra degrees of freedom + unification

Summary

The Standard Model is NOT a complete story

Pictures that go Beyond the SM are not lacking, but - fair to say - we don't know which one is right

The very nature of Particle Physics and the current uncertain situation REQUIRE highly diverse frontiers of research
(Not in contradiction with above) the SM is going TO STAY as an accurate and very economic description/explanation of fundamental physics at short scales

For possible questions

Composite Higgs $\left(G \xrightarrow{f} H \xrightarrow{v} U(1)_{e m}\right)$

$$
\begin{gathered}
\Delta_{v / f}=(f / v)^{2} \quad \Delta_{m_{h}^{2}}=\frac{g_{E}^{2}}{\lambda_{t}^{2}}\left(\frac{m_{T}}{500 G e V}\right)^{2} \\
\Delta_{\text {tot }}=\Delta_{v / f} \Delta_{m_{h}^{2}}
\end{gathered}
$$

Higgs precision (left) and direct searches (right, single and double T prod.) explore $\Delta_{v}=10 \div 100$

Matsedonsky et al 2015

MSSM

$$
\begin{gathered}
\Delta_{v}=\frac{\delta v^{2}}{v^{2}}=\frac{4 c_{W}^{2}}{g^{2}} \frac{\delta m_{H_{u}}^{2}}{v^{2}} \quad \delta m_{H_{u}}^{2}=\frac{3}{4 \pi^{2}} \frac{m_{t}^{2}}{v^{2} s_{\beta}^{2}} m_{\tilde{t}}^{2} \log \left(\Lambda^{2} / m_{\tilde{t}}^{2}\right) \\
m_{h}^{2}<M_{Z}^{2} c_{2 \beta}^{2}+\Delta m_{h}^{2}\left(\log m_{\tilde{t}}, A_{t}\right)
\end{gathered}
$$

$m_{h}=125 \mathrm{GeV}$ requires $m_{\tilde{t}} \gtrsim 1 \mathrm{TeV}$, large $A_{t} \Rightarrow \Delta_{v}>100 \div 1000$

Direct searches explore $\Delta_{v} \gtrsim 100 \div 1000$
$\operatorname{NMSSM}\left(\lambda S H_{u} H_{d}\right)$

$$
\Delta_{v}=\frac{\delta m_{H_{u}}^{2}}{\lambda^{2} v^{2}} \approx \frac{g^{2}}{4 \lambda^{2}} \Delta_{v}^{M S S M} \quad m_{h}^{2} \leq M_{Z}^{2} c_{2 \beta}^{2}+\lambda^{2} v^{2} s_{2 \beta}^{2}
$$

$m_{h}=125 \mathrm{GeV}$ in the right ballpark for $\lambda \approx 1$ and $t_{\beta} \lesssim 3 \div 4$ without the need of a heavy stop

Direct searches, including extra scalars explore $\Delta_{v}=10 \div 100$ LHC13, $100 \mathrm{fb}^{-1}$
LHC14, $300 \mathrm{fb}^{-1}$
LHC14, $3000 \mathrm{fb}^{-1}$

Electric Dipole Moments

in absence of other CPV operators

	limit (e cm)	year	SM (e cm)
electron	$8.7 \cdot 10^{-29}$	2013	$\sim 10^{-38}$
neutron	$2.9 \cdot 10^{-26}$	2006	$\sim 10^{-31}\left(^{*}\right)$

ACME Collaboration Gabrielse (Harvard), DeMille (Yale) et al using a polarized ThO molecule

The classic search

$$
\mathcal{L}_{a \gamma \gamma}=-\left(\frac{\alpha}{\pi} \frac{g_{\gamma}}{f_{a}}\right) a \vec{E} \cdot \vec{B}=-g_{a \gamma \gamma} a \vec{E} \cdot \vec{B}
$$

> Not easy to explore the most relevant region
> $m_{a}=10^{-5} \div 10^{-3} \mathrm{eV}$

ADMX

Lepton Flavour Violation

> TModers
> Signorelli - SNS, 7-10 Dec 2014

Motivation: extra degrees of freedom + unification

Only one scalar: the Higgs boson? Dec 2011
 Dec 2015

If real, who ordered it?

Nice prospects in the quark sector

My favorite explanation

$\Rightarrow m_{h} \leq M_{Z} \cos 2 \beta \longrightarrow 125 \mathrm{GeV}$. How?
\Rightarrow Why 3 generations?
Answer: the NMSSM with a unified coupling $\alpha_{G} \approx 1$ as provided by one vector-like extra generation $N_{g}=3+2$

$$
W_{e f f}=W_{Y u k}+\lambda_{H} S H_{u} H_{d}+\lambda_{i} S \bar{\Phi}_{i} \Phi_{i}+\frac{\kappa}{3} S^{3}
$$

B, Buttazzo, Hall, Marzocca 2016

My favorite explanation

A vector lepto-quark $U_{\mu}^{2 / 3}$ singlet under a flavour $U(2)_{Q} \times U(2)_{L}$

$$
\mathcal{L}=g_{U} U_{\mu}^{2 / 3}\left(\bar{Q}_{3} \gamma_{\mu} L_{3}\right)+\text { h.c. }
$$

$$
\begin{gathered}
+\quad U(2)_{Q} \times U(2)_{L} \text { - breaking as in MFV } \\
\Rightarrow \quad g_{U} U_{\mu}^{2 / 3}\left(\bar{u}_{L i} \gamma^{\mu} F_{i j}^{U} \nu_{L j}+\bar{d}_{L i} \gamma^{\mu} F_{i j}^{D} e_{L j}\right)+\text { h.c } \\
F_{i j}^{U, D} \approx \delta_{i 3} \delta_{j 3}
\end{gathered}
$$

need $\frac{4 g_{U}^{2} M_{W}^{2}}{g^{2} M_{U}^{2}} \approx 0.25 \div 0.35$
B, Isidori, Pattori, Senia 2015

