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Motivation

Basic algebraic properties of Feynman graphs: Hopf Algebras

Gauge symmetries

Feynman rules and their structure

Dyson Schwinger Equations in QED

Transcendentality, analytic strcuture of amplitudes



The fundamentals of fundamental processes
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=
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Try: integer→graphs, power −s →Feynman rules, ζ(s) →Green
function GR({g}, ln s, {Θ})

GR({g}, ln s, {Θ}) = 1± ΦR
ln s,{Θ}(X

r ({g})) (1)

with X r = 1±∑

j g
jB

r ;j
+ (X rQ j(g)), bB r ;j

+ = 0.



An Example
◮ The co-product

∆′
(

++ + + + + +

)

= 3 ⊗
+2 ⊗ + ⊗ .

◮ The counterterm

SΦ
R (

++ + + + + + ) = −Rm
[

SΦ
R ⊗ ΦP

]

×

×∆
(

++ + + + + +

)

= −R
{

Φ
(

++ + + + + +

)

+

+R [Φ (3 + 2 + )] Φ ( )}
◮ The renormalized result

ΦR = (id− R)m(SΦ
R ⊗ ΦP)∆

(
++ + + + + +

)

= (id− R)
{

Φ
(

++ + + + + +

)

+R [Φ (3 + 2 + )] Φ ( )}



sub-Hopf algebras

◮ summing order by order

c rk =
∑

|Γ|=k,res(Γ)=r

1

|Aut(Γ)|Γ ⇒ ∆(c rk) =
∑

j

Polj(c
s
m)⊗ c rk−j . (7)

◮ Hochschild closedness

X r = 1±
∑

j

c rj α
j = 1±

∑

j

αjB
r ;j
+ (X rQ j (α)), (8)

Q j = X v√∏
edges e at v

X e
. Evaluates to invariant charge.

◮ bB
r ;j
+ = 0.

∆B
r ;j
+ (X ) = B

r ;j
+ (X )⊗ 1 + (id ⊗ B

r ;j
+ )∆(X ). (9)

Implies locality of counterterms upon application of Feynman rules
ΦB r ;j

+ (X ) =
∫
dµr ;jΦ(X ):

R̄(Γ) = m(SR
Φ ⊗ ΦP))∆B

r ;j
+ =

∫

dµr ;jΦ
R(X ). (10)



Symmetry

◮ Ward and Slavnov–Taylor ids

ik := c
ψ̄ψ
k + c

ψ̄A/ψ
k (11)

span Hopf (co-)ideal I :

∆(I ) ⊆ H ⊗ I + I ⊗ H. (12)

∆(i2) = i2 ⊗ 1 + 1⊗ i2 + (c
1
4
F 2

1 + c
ψ̄A/ψ
1 + i1)⊗ i1 + i1 ⊗ c

ψ̄A/ψ
1 .

◮ Feynman rules vanish on I ⇔ Feynman rules respect
quantized symmetry:
ΦR : H/I → V .

◮ Ideals for Slavnov–Taylor ids generated by equality of
renormalized charges, also for the master equation in
Batalin-Vilkovisky (see Walter van Suijlekom’s work)

◮ Similar ideals for the core Hopf algebra are respected by the
BCFW recursion, and fit naturally with the structure of
perturbative quantum gravity



Kinematics and Cohomology

◮ Exact co-cycles
[B r ,j

+ ] = B
r ;j
+ + bφr ;j (22)

with φr ;j : H → C

◮ Variation of momenta

GR({g}, ln s, {Θ}) = 1± ΦR
ln s,{Θ}(X

r ({g})) (23)

with X r = 1±∑

j g
jB

r ;j
+ (X rQ j(g)), bB r ;j

+ = 0. Note:
β(g) = 0 ⇔ Q(g) = constant.
Then, for kinematic renormalization schemes:
{Θ} → {Θ′} ⇔ B

r ;j
+ → B

r ,j
+ + bφr ,j .

ΦR
L1+L2,{Θ} = ΦR

L1,{Θ} ⋆ Φ
R
L2,{Θ}.

ΦR(ln s, {Θ}, {Θ0}) = Φ−1
fin ({Θ0} ⋆ΦR

1−scale(ln s) ⋆ Φfin({Θ}).



The Feynman rules in projective space

First, φΓ → φΓ + ψΓ(
∑

e m
2
eAe).

ΦR
Γ (S ,S0, {Θ,Θ0}) =

∫

PE−1(R+)

forestsum
︷︸︸︷
∑

f

(−1)|f |

ln
S
S0
φΓ/f ψf +φ

0
f
ψΓ/f

φ0
Γ/f
ψf +φ

0
f
ψΓ/f

ψ2
Γ/f ψ

2
f

ΩΓ
︸︷︷︸

(E−1)−form

Note: for 1-scale graphs, φΓ = ψ•
Γ.



Example

Γ =
1

2

3 4

NΓ =





A1 + A2 + A3 A1 + A2 A1µ1 + A2µ2 + A3µ3

A1 + A2 A1 + A2 + A4 A1µ1 + A2µ2 + A4µ4

A1µ̄1 + A2µ̄2 + A3µ̄3 A1µ̄1 + A2µ̄2 + A4µ̄4

∑4
i :=1 Ai µ̄iµi





ψΓ = (A1 + A2)(A3 + A4) + A3A4 =
∑

sp.Tr.T

∏

e 6∈T Ae

φΓ = (A3 + A4)A1A2p
2
a + A2A3A4p

2
b + A1A3A4p

2
c =

∑

sp.2−Tr.T1∪T2
Q(T1) · Q(T2)

∏

e 6∈T1∪T2
Ae .



The renormalized result

Theorem
The unrenormalized Feynman integrand at n loops for the sum of

all Feynman graphs contributing to the connected k-loop

amplitude is Φ(Γk) =
∑

|Γ|=n,|EE (Γ)|=k e
−

∑
e

∮
ce (

∏

e∈EΓ gµ(v1(e))µ(v2(e))D
gauge
hom (Γ)) e

−

φΓ
ψΓ

ψ2
Γ

∏

e∈EΓ dAe .

The renormalized result is obtained as

D
gauge
hom

∑

f ∈F

(−1)|f |
e
−
φΓ/f
ψΓ/f

ψ2
Γ/f

e
−
φf
ψf

ψ2
f

with the graph differential in front of the forest sum.
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Figure 3: P (x) = x, s = 1 illustrating that, as a function of L, non-global solutions of (8) turn around

and head to �1 as L!1.

Our first step is to show that solutions that start below the nullcline 




(x

0

) cannot be continued as x!

1. Note that this does not follow directly from (20), since 

1

(x) could a priori decrease indefinitely as

x!1 without ever reaching 


1

= 0.

Lemma 4.1 Let 

1

(x

0

) < 





(x

0

) then the solution of (8) satisfies 

1

(x

1

) = 0 for some finite x
1

> x

0

.

Proof. Let 
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0
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1
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1
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0

) for all

x � x

0

such that the solution exists, otherwise there would be a local minimum at some x? 2 [x

0

; x℄,

which is precluded by (20). Since P (x) is increasing, we find
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x

; (24)

for some R(x

0

; �) > 0: Integrating (24) on [x

0

; x℄ gives
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Z

x

x

0
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z
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(x

0
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0
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which shows that 

1

(x

1

) = 0 for some x
1

� x

0

exp
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0

)��
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0
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<1 as claimed.
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The polylog as a Hodge structure

Iterated integrals: obvious Hopf algebra structure





1 0 0
−Li1(z) 2πi 0
−Li2(z) 2πi ln(z) (2πi)2



 = (C1,C2,C3) (24)

Var(ℑLi2(z)− ln |z | ℑLi1(z)) = 0 (25)

Hodge sructure from Hopf algebra structure: branch cut
ambiguities columnwise
Griffith transversality ⇔ differential equation



The Feynman graph as a Hodge structure

Hopf algebra structure as above



















1 0 0 0 0

0 0 0

0 0 0

0 0 0



















=(C1,C2,C3,C4,C5)

Var



ℑ −



ℜ · ℑ



+ · · ·



 = 0

Hodge structure: cut-reconstructability: from Hopf algebra structure:
branch cut ambiguities columnwise

Griffith transversality ⇔ differential equation?



ζ(s1, · · · , sk) =
∑

ni<ni+1

1
n
s1
1 ···nskk

◮ counting over Q

1− x3y

1− x2
+

x12y2(1− y2)

(1− x4)(1− x6)
=

∏

n≥3

∏

k≥1

(1− xnyk)Dn,k (26)

→ first irreducible MZV from planar graphs at 7 loops in
scalar field theory (integrability???)

◮ When is a graph redicible to MZVs? Francis Brown: when it
has vertex width three.

◮ Caution! Non-MZVs at eight loops from non-planar graphs, at nine

loops from planar graphs (’A K3 in φ4’, Brown and Schnetz). Proof

from counting points [XΓ] on graph hypersurfaces XΓ over Fq,

defined by vanishing of the first Symanzik polynomial. If the graph

gives a MZV, [XΓ] better is polynomial in the prime power q = pn.

Alas, it is not in general, with counterexamples relating graphs to

elliptic curves with complex multiplication, and point-counting

function a modular form.
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