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Pions

Many of the quantities of interest at the precision frontier of
particle physics require a good understanding of the strong
interaction at low energies.

In this context, the lightest hadrons are the most important

π+ π0 π–

It is essential that we know why the pions are so light.
This understanding relies on symmetry.
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Isospin symmetry

Heisenberg 1932: strong interaction is invariant under isospin
rotations – this is why Mp ' Mn.

⇒ Mass difference must be due to the e.m. interaction.

Puzzle: e.m. field around the proton is stronger, makes the
proton heavier than the neutron.

Numerous unsuccessful attempts at solving this puzzle.

If QCD describes the strong interaction correctly, then
mu must be very different from md . Gasser & L. 1975

mu/md ' 0.67, ms/md ' 22.5 first crude estimate
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Isospin symmetry

mu/md ' 0.67, ms/md ' 22.5 first crude estimate 1975

Masses of the pseudoscalar mesons confirm the picture:
MK+ < MK0 also requires a contribution due to mu < md
that is larger than the e.m. self-energy difference
mu/md ' 0.56, ms/md ' 20.1 Weinberg 1977

Current lattice estimates
mu/md = 0.46±0.03, ms/md = 20.0±0.4

FLAG 2016, to be published very soon
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Chiral symmetry

Since mu is very different from md : how come that isospin is
a nearly perfect symmetry of the strong interaction ?

QCD explains this very neatly: for yet unknown reasons, it so
happens that mu and md are very small.

If mu and md are set equal to zero⇒ QCD becomes
invariant under independent flavour rotations of the right- and
left-handed u, d -fields.

Symmetry group: SU(2)R×SU(2)L

This symmetry was discovered before QCD: Nambu 1960.

strong interaction has an approximate chiral symmetry
chiral symmetry is hidden, spontaneously broken
spontaneous symmetry breakdown generates massless bosons
the pions are the massless bosons of chiral symmetry
are not exactly massless, because the symmetry is not exact
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Mass of the pion

For mu = md = 0 the pions are massless (Nambu-Goldstone
bosons of an exact, spontaneously broken symmetry).

For small values of mu,md : M2
π is proportional to mu + md :

M2
π = (mu + md )× |〈0| ūu |0〉| ×

1

F 2
π⇑ ⇑

explicit spontaneous symmetry breaking

Gell-Mann, Oakes, Renner 1968

Only mu + md counts.

Fπ is known from π+ → µ+ν, but |〈0| ūu |0〉| = ?
Non-perturbative method required to calculate |〈0| ūu |0〉|.
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Lattice results for Mπ

GMOR formula is beautifully confirmed on the lattice:

can determine Mπ as a function of mu = md = m.

0 0.01 0.02 0.03 am

0

0.02

0.04

0.06

0.08

(amπ )2
mπ∼676 MeV

484

381

294

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

(m
∞ π
)2

[G
eV

2
]

mMS
q (2GeV) [GeV]

CmMS
q (2GeV)
a ≈ 0.08 fm
a ≈ 0.07 fm
a ≈ 0.06 fm

⇑ physics ⇑ physics

Lüscher Lattice conference 2005 RQCD collaboration, arXiv:1603.00827

Proportionality of M2
π to mud holds out to about

mud ' 10×physical value of 1
2(mu + md ). Dürr, arXiv:1412.6434
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Corrections to the GMOR relation

Switch the electroweak interactions off, consider pure QCD.
Mπ = Mπ(ΛQCD,mu,md ,ms ,mc ,mb,mt)

Chiral expansion, chiral perturbation theory (χPT):
expand Mπ in powers of mu,md .
The formula of GMOR gives the leading term:

M2 ≡ (mu + md )B B = lim
mu ,md→0

|〈0| ūu |0〉|
F 2
π

B is independent of mu,md .

χPT shows that the next term in the expansion is given by

M2
π = M2

{
1−

M2

2(4πFπ)2
¯̀

3 + O(M4)

}
¯̀

3 = ln
Λ2

3

M2
depends logarithmically on M
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Corrections to the GMOR relation

M2
π = M2

{
1−

M2

2(4πFπ)2
¯̀

3 + O(M4)

}
¯̀

3 = ln
Λ2

3

M2

Chiral symmetry does not determine the scale Λ3.
Lattice calculations reduced the uncertainty very significantly.
Review of Bijnens and Ecker: arXiv:1405.6488

¯̀
3 = 3.0±0.8↔ Λ3 ' 600 MeV.

⇒ Correction in Mπ is tiny:
M2
π

2(4πFπ)2
¯̀

3 ' 0.024

Not a surprize: mu,md are small, of the order of a few MeV.
SU(2)×SU(2) should be a nearly perfect symmetry !
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Why is the strong interaction nearly isospin invariant ?

mu,md small⇒ SU(2)×SU(2) a nearly perfect symmetry.

Isospin is a subgroup of SU(2)×SU(2).
⇒ Isospin is a nearly perfect symmetry.
⇒ The strong interaction is nearly invariant under isospin

rotations because mu,md are small.

But: the fact that SU(2)×SU(2) symmetry is broken
is clearly seen: Mπ 6= 0
Why is the breaking of isospin symmetry so well hidden ?
Why is Mπ0 nearly equal to Mπ+ ?

The Nambu-Goldstone bosons are shielded from isospin
breaking: leading term in Leff only knows about mu + md .

⇒ Expansion of M2
π+ −M2

π0 in powers of mu,md does not
contain a term ∝ mu −md . Leading contribution is of order
(mu −md )2 ⇒ in QCD, Mπ+ −Mπ0 is tiny.
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Mass of the kaon

Kaons are not protected from isospin breaking,
are also NG bosons, become massless if ms is sent to zero

π+: ud̄ K+: us̄ K0: d s̄
Leading terms in the expansion in powers of mu,md ,ms :
M2
π+ = (mu + md )B

M2
K+ = (mu + ms)B

M2
K0 = (md + ms)B ⇒ M2

K+ −M2
K0 = (mu −md )B

B drops out in the ratios

⇒
M2

K+

M2
π+

=
mu + ms

mu + md
up to higher order contributions

ms happens to be much larger than mu,md
Explains why MK � Mπ

Masses of the NG bosons are very sensitive to mu,md ,ms
mu,md ,ms break chiral symmetry

⇒ Mπ, MK measure the strength of the symmetry breaking
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Isospin limit

If u and d are given the same mass mud and e = 0, there are
three degenerate isospin multiplets: Mπ,MK ,Mη

At leading order of the chiral expansion, the relative size of the
three masses is determined by the relative size of mud and ms
M2

K

M2
π

=
mud + ms

2mud

M2
η

M2
π

=
mud + 2ms

3mud
How large are the contributions from the higher orders ?

Denote the higher order contributions by ∆M :
M2

K

M2
π

=
mud + ms

2mud
(1 + ∆M)

Lattice result for quark masses: ms/mud = 27.3(3) FLAG

⇒ ∆M = -0.05(1)
⇒ Higher order contributions are remarkably small.

Compare
FK

Fπ
= 1 + ∆F ∆F = 0.193(3) FLAG
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Mass pattern of the NG bosons

Relative size of Mη and MK :
M2
η

M2
K

=
2(mud + 2ms)

3(mud + ms)
(1 + ∆′M)

The higher order contributions are remarkably small also here:
∆′M = -0.062(2)

Not a surprise: the Gell-Mann-Okubo formula
4M2

K ' 3M2
η + M2

π

is known to receive only small corrections from higher orders.
If it was exact, ∆′M would be determined by ∆M .
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Isospin breaking

Two sources of isospin breaking: e2 and mu 6= md .

Dashen theorem: at LO of the expansion in mu,md ,ms ,
M2

K+ gets the same contribution from the e.m. interaction as
M2
π+ , while M2

π0,M2
K0,M2

K̄0,M2
η, do not get anything at all.

⇒ (M2
K+−M2

K0 )
QED

= (M2
π+−M2

π0 )
QED
× (1 + ε)

Dashen theorem only holds at leading order of χPT.
ε collects the contributions of higher order in mu,md ,ms .

Oven fresh lattice determinations:
ε = 0.73(18) BMW arXiv:1604.07112

ε = 0.73(14) MILC arXiv:1606.01228

⇒ In the self-energies, the higher order effects are large.
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Electromagnetic self-energies

As pointed out long ago, the e.m. self-energy of the pion obeys
a low energy theorem which neatly explains its magnitude.

Das, Guralnik, Low, Mathur & Young 1967

This theorem does not rely on the expansion in powers of ms
⇒ Holds up to corrections of order e2M2

π.

For the kaon, the theoretical constraints are much weaker.

The corrections to the Dashen theorem are of order e2M2
K .

The strange quark in the K+ is heavier than the down quark
in the π+ → wave function narrower→ self-energy larger.
An evaluation of the Cottingham formula for π+ and K+ is
needed to understand the difference quantitatively.
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Effects from mu 6= md

As mentioned already, the vacuum shields the pions from
isospin breaking within QCD.

For the kaons, there is a low-energy theorem Gasser & L. 1985

M2
K0 −M2

K+

M2
K −M2

π

·
M2
π

M2
K QCD

=
m2

d −m2
u

m2
s −m2

ud
(1 + δM)

Similar to the one for M2
K/M

2
π, but there is a difference:

δM is of NNLO, hence expected to be very small.

For small quantities like δM , details matter. Identify M2
π,M

2
K

with the mean squared masses of the two multiplets and
evaluate the e.m. self-energies of the neutral particles with the
numbers quoted by FLAG.
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Low energy theorem for M2
K 0 −M2

K+

Numerical result obtained from the most recent lattice data:
BMW MILC

mu/md 0.485(20) 0.455(13)
ms/mud 27.53(22) 27.36(10)
ε 0.73(18) 0.73(14)

δM 0.08(7) -0.01(5)

Results agree within about 1 σ.
Treating these as independent determinations

⇒ δM = 0.02(4) lattice results do obey the low-energy theorem.
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Mass of the nucleon

MN ,Mπ are determined by ΛQCD, mu,md , . . . ,mt .

Set mu and md equal, common mass mud .
Keep all other parameters fixed.

⇒ Values of MN ,Mπ only depend on mud .
Conversely, mud is determined by Mπ.

⇒ Value of MN determined by value of Mπ.
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’Ruler plot’ of
André Walker-Loud
I thank Claude Bernard
for providing this update
(see PoS(CD15)004)

Lattice results shown are roughly on a straight line:
MN = M0 + cMπ

H. Leutwyler University of Bern Puzzles in low-energy QCD



Mass of the nucleon

Lattice results shown are roughly on a straight line:
MN = M0 + cMπ

In QCD, the Taylor series starts with
MN = M0 + c1M2

π + c2M3
π + c3M4

π`n(c4Mπ) + O(M5
π)

A term proportional to Mπ does not occur.
M2
π ∝ mud ⇒ Mπ ∝

√
mud

⇒ ruler fit is puzzling.
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Mass of the nucleon

New data from BMW
M
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I thank Stephan Dürr
for this plot
(see arXiv:1510.08013)

In the range shown, the data are consistent with
MN = M0 + k1mud
M2
π = k2mud

⇒ BMW data are well described by
MN = M0 + cM2

π
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Mass of the nucleon

Comparison of ruler fit with BMW fit
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⇒ No evidence for a term linear in Mπ.
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σ-term

Recent lattice data allow a determination of the σ-term
matrix elements (throughout, I consider the isospin limit)

σπN =
mud

2MN
〈p|ūu + dd |p〉

y =
2〈p|s̄ s|p〉
〈p|ūu + dd |p〉

Numerical results:

σπN (MeV) y archiv

BMW 38(3)(3) 0.20(8)(8) 1510.08013
XQCD 44.4(3.2)(5.5) 0.058(6)(8) 1511.09089

ETM 37.22(2.57)(+0.99
– 0.63) 0.075(16) 1601.01624

RQCD 35(6) 0.104(51) 1603.00827

blind average 38.2(2.0) 0.064(8)

The four results are consistent with one another.
⇒ Data indicate a σ-term around 38 MeV and a small value of y .
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Significance of σπN

Feynman-Hellman theorem: σπN = mud
∂MN

∂mud at physical mud

Since the physical value of mud is small, it is in the region
where M2

π = k2 mud holds to high accuracy.

⇒ σπN = M2
π

∂MN

∂M2
π at physical Mπ

⇒ In the plot of MN versus M2
π, the σ-term measures the slope

at the physical point.
⇒ σπN ' MN −M0

0 1 2
Mπ

2
850

900

950

1000

MN

ruler fit
BMW fit
physics

σπN

BMW: σπN ' 38 MeV
ruler fit: σπN ' 70 MeV
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Significance of y

y measures the size of 〈p|s̄ s|p〉.
Violates the Okubo-Zweig-Iizuka-rule, vanishes for Nc →∞.

y is relevant for matrix element of the octet operator:

σ0 =
mud

2MN
〈p|ūu + dd − 2 s̄ s|p〉 = σπN (1− y)

Blind average over the four lattice results yields
σ0 = 35.7(1.9) MeV

⇒ σ0 smaller than σπN = 38.2(2.0), but only slightly.
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Low energy theorem for σ0

For mu = md = ms , SU(3) is an exact symmetry of QCD.
⇒ N,Σ,Λ,Ξ have the same mass.

ms−mud removes the degeneracy, breaks SU(3).
(disregard from isospin breaking, take mu = md )
Expand in powers of ms−mud .

2MN + 2MΞ = 3MΛ + MΣ Gell-Mann-Okubo-formula
valid to O(ms−mud ). Works very well, also for the baryons.

Mass splitting is determined by the matrix element

MΣ + MΞ − 2MN =
ms−mud

2MN
〈p|ūu + dd − 2s̄s|p〉

⇒ This leads to a low-energy theorem for σ0:

σ0 =
mud

ms−mud
(MΣ + MΞ − 2MN)

{
1 + O(ms−mud )

}
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Low energy theorem for σ0

σ0 =
mud

ms−mud
(MΣ + MΞ − 2MN)

{
1 + O(ms−mud )

}
Numerically, the leading term amounts to σ0 ' 25 MeV.

The NLO corrections were analyzed long ago. The
perturbations generated by the quark mass term in the
Lagrangian of QCD have infrared singularities (the
unperturbed system contains massless mesons). These amplify
the corrections, increasing the value of σ0 by about 10 MeV:

σ0 = 35± 5 MeV Gasser 1981

⇒ The quoted lattice results beautifully confirm this prediction.
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Low-energy theorem for πN scattering

The isospin even πN scattering amplitude obeys a low-energy
theorem: the leading term in the expansion of the quantity

Σ = F 2
πD̄+

s = u, t = 2M2
π ←’Cheng-Dashen point’

in powers of mud is given by σπN .
⇒ If the common mass of the two lightest quarks is turned off,

both Σ and σπN tend to 0 and the ratio Σ/σπN tends to 1.

The theorem can be used to measure σπN in πN scattering.
Relying on the dispersive analysis of Höhler et al.
(Karlsruhe-Helsinki collaboration), we obtained
σπN = 45 MeV Gasser, L. & Sainio 1991

This was compatible with σ0 = σπN(1− y) = 35(5) MeV,
provided a modest violation of the OZI-rule was allowed for:
y = 0.2 Gasser, L. & Sainio 1991

The picture thus looked coherent, but the πN data showed
serious inconsistencies. For this reason we were not able to
attach meaningful uncertainties to the above estimates.
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Roy-Steiner equations

In the meantime, the lattice results have confirmed the value
of σ0, but indicate that the violation of the OZI-rule is
smaller: the lattice values for σπN are below 45 MeV.

There is very significant progress in the dispersive analysis.
Hoferichter, de Elvira, Kubis & Meissner, 2015, 2016

Solutions of the Roy-Steiner equations for the πN scattering
amplitude are now available. Extension from ππ to πN is a
highly nontrivial achievement, because not all three channels
involve the same physics: while the s- and u-channels carry
the quantum numbers of πN , the t-channel concerns the
transition ππ ↔ NN̄ .

Spin is a nontrivial complication: 4 amplitudes are needed.
For ππ scattering a single amplitude suffices.
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σ-term puzzle

Outcome of the Roy-Steiner analysis:
σπN = 59.1(3.5) MeV Hoferichter et al., arXiv:1506.04142

I find this result very puzzling because of two prejudices:

1 SU(3) is a decent approximate symmetry, also for the matrix
elements of the operator q̄λaq in the baryon octet.

2 The rule of Okubo, Zweig and Iizuka is approximately valid.

If σπN is above 50 MeV⇒ at least one of these is wrong.
The lattice results are consistent with both of them.

Clash between two independent determinations of σπN :

baryon masses πN scattering
Lattice Roy-Steiner
38 MeV 59 MeV
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σ-term puzzle

Clash between two independent determinations of σπN :

baryon masses πN scattering
Lattice Roy-Steiner
38 MeV 59 MeV

Lattice: two different methods

Feynman-Hellman-theorem.
Direct determinations of the σ-term matrix elements.

Roy-Steiner

πN phase shifts.
S-wave πN scattering lengths from pionic atoms.
The analysis of the t-channel partial waves is new.
Previously, the subtraction constant d+

01 was estimated from
the available experimental information, now it is calculated by
solving a Muskhelishvili-Omnès problem. It will be very
interesting to compare the outcome with experiment.
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σ-term puzzle

The clash is not new – many references deal with the subject.
see for instance Pavan et al. 2002, Matsinos & Rasche 2015

New results accentuate the problem:
Model dependence of the analysis is reduced.
Uncertainty estimates have become small.

Can the discrepancy be resolved with χPT ?
Alarcon, Alvarez-Ruso, V. Bernard, de Elvira, Epelbaum, Gasparyan, Gegelia
Geng, Hoferichter, Krebs, Kubis, Ledwig, Martin Camalich, Meißner, Meng,
Oller, Ren, Siemens, Vicente Vacas, Yao

A reliable lattice determination of the LECs relevant for the
masses of the meson and baryon octets would be most
welcome, but is not easy to achieve.

The lattice results depend on extra parameters related to the
regularization used. This may be the reason why the values of
σπN obtained by analyzing lattice data with χPT differ from
those found by the collaborations responsible for the data.

(recall comparison of ruler fit with BMW fit.)
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Conclusions

Mesons

The quark masses are mysterious, but the mass spectrum of
the lightest hadrons is well-understood in terms of these.

Key point: mu,md ,ms are small, can expand and retain only
the first few terms, i.e. use χPT.

χPT predictions for the dependence of Mπ on mud confirmed.

χPT predictions for Mπ : MK : Mη confirmed.

If isospin breaking is disregarded, the mass pattern of the
lightest mesons is controlled by the quark mass ratio
ms/mud , which happens to be large.

The mass difference between π+ and π0 is due almost
exclusively to the e.m. interaction and is understood on the
basis of a low-energy theorem that does not require an
expansion in ms .
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Conclusions

The mass difference between K+ and K0 is dominated by the
contribution proportional to mu −md .

There is a low-energy theorem for this contribution, valid to
NNLO of χPT. The lattice results confirm this prediction.

The e.m. self-energy of the K+ is small and strongly modified
by non-leading orders of the expansion in powers of ms .
Their size is determined quite well on the lattice, but more
work is needed to comprehend the numerical results.
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Conclusions

Baryons

Significant progress on the lattice.

The results are consistent with the chiral expansion.
In particular, the values obtained for σ0 confirm the old
estimate obtained from the expansion of the baryon masses.
Violations of the OZI-rule are found to be small.

Significant progress in dispersive analysis of πN scattering.

New analysis of t-channel dispersion relations.
Outcome for σπN is puzzling.
Disagrees with the lattice results and calls for exorbitant
violations of SU(3)-symmetry in the matrix elements of q̄λaq.
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Conclusions

Not discussed and work to be done

There is a wealth of data on πN scattering.

Comparison with Roy-Steiner analysis will be most interesting.

Can the experimental inconsistencies be resolved ?

In particular: π−p → π0n, π0p → π+n ?

Are the basic theoretical constraints obeyed ?

Goldberger-Treiman relation (ties gπN to gA )

Adler-Weisberger sum rule (ties gA to the total cross section)

Are the predictions for ππ → NN̄ consistent with experiment ?
———————————————————————————————–

Determine the matrix elements of ūu, dd , s̄s for other members of the
meson and baryon octets. isospin

⇓
’Scalar charge’ gS =

1

2m
〈p|ūd |n〉 =

1

2m
〈p|ūu − dd |p〉

Relevant for the mass difference between p and n in QCD.
González-Alonso & Martin Camalich, arXiv:1309.4434
Bhattacharya, Cirigliano et al., arXiv:1606.07049

Any evidence for strong violations of SU(3) in the scalar matrix elements ?
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σπN not the only puzzle worth thinking about . . .

Proton charge radius

Standard Model prediction for magnetic moment of the muon
...
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