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QCD: A simple theory?

Letr = 5(84T)(Bum) + ...
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" Nuclei Net Baryon Density

o Phases: hadronic phase, quark-gluon plasma, color superconductor,
quarkyonic?

o Transitions: first order line, crossover at ;1 =0

o Critical point: existence? position?
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Quarks and Gluons
o

; Hadrons

YELF - g(iB ~ M)a

o Challenges for all methods at 4 > T, e.g.

o Lattice QCD: complex action problem
o Models: parameters

o Functional methods: reliability of truncations
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Functional methods

Functional equations: Exact equations derived from QCD action.

%F‘qua'“” +G(ilp — M)q
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Functional equations: Exact equations derived from QCD action.
Dyson-Schwinger egs.:
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Functional equations: Exact equations derived from QCD action.
Dyson-Schwinger egs.:

_1_Fa Fa,uu + Ci(/@ _ M)C] eqs. of motion of correla
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o Chiral limit accessible.
o No sign problem.
o Large scale separations easy. p ) % ) i
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Functional methods

Functional equations: Exact equations derived from QCD action.
Dyson-Schwinger egs.:
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o Chiral limit accessible. o
o No sign problem.
o Large scale separations easy. 2 §:§ m@jj:?m

mm‘m

% § funct. renorm. group egs.
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Difficulty

Infinitely large systems of equations without obvious ordering scheme.
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QCD phase diagram from functional equations

2+1 flavor QCD from DSEs

[Fischer, Liicker, Welzbacher '14]:
200 : :

rrrrrr Lattice: curvature range k=0.0066-0.0180
--- DSE: chiral crossover

501 @ DSE: critical end point -
/—— DSE: chiral first order

/=~ DSE: deconfinement crossover
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u, Mev]

|
150 200
Positions of critical endpoint:

~ (168 MeV, 115 MeV)

lattice gluon from T = 0, vertex
model
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QCD phase diagram from functional equations

Introduction

241 flavor QCD from DSEs 2 flavor QCD from DSEs
[Fischer, Liicker, Welzbacher '14]: [Xin, Qin, Liu 15]
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Positions of critical endpoint:

~ (168 MeV, 115 MeV) ~ (122 MeV, 126 MeV)
lattice gluon from T = 0, vertex rainbow approximation
model
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Landau gauge QCD

_ 1
L=G(=D+m)q+ SF+ Lo+ Ly
Fu = 0,A, —0,A, +iglA,A)
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Landau gauge QCD

_ 1
L=qg(-D+m)q+ §F2 + Lgr + Lgn
Frw = 0,A, — 0,A, +ig[Au, Al

T T X

S DAda 7 DAAA  DAAAA
Landau gauge

o simplest one for functional equations

1
E(a#A#)z, §—0 S i

o requires ghost fields: Lo, =c(—0+gAx)c G DAce

Qo 6,LA# = (0 ng =
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The tower of DSEs
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The tower of DSEs

PO 0l
i i -3 N gluon propagator

Joad ,1: N K -1 Jo—yon ghost propagator
j Pl I - quark propagator
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The tower of DSEs

i j _1= + i j -1 —;— i S 2 j —;_ J—( >—i + :_-:I_I
Lo - e - i/CA\j gluon propagator
IR fl: i i -1 Jeyoa ghost propagator
i i '1: . I MO N quark propagator
V\T/k' 7 Yk N (S e -\ eﬁe
o ) . . . \r g\ﬂoﬁ& A
CoL c\“a

e ® .
v PN Lo ‘ L
S W : Al A U 34 PN

Infinitely many equations. In QCD, every n-point function depends on (n+ 1)-
and possibly (n + 2)-point functions.

Lo
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Truncating the equations

Guides
o Perturbation theory
o Symmetries
o Lattice

o Analytic results
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Truncating the equations

Guides
o Perturbation theory
o Symmetries
o Lattice

o Analytic results

Truncation
o Drop quantities (unimportant?)
o Use fits
o Model quantities (good models available? 'true’ or 'effective’?)

Ideally: Find a truncation that has (I) no parameters and yields (1) quantitative
results.
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Example: Bottom-up approach

Quark gap equation:

S(p) So(p) S(q)

Required input:
o Gluon propagator D(p?)
o Quark-gluon interaction I'(p, q)

Effective interaction D(p?)[(p, q) = G(p?)
Example: Maris-Tandy interaction with parameters w, D

G(s) _ 47T2D5e75/‘”2 N A1 ymm F(5) .
s wb 1/2In[r+(145/Ngcp)?

— Use for bound state studies.
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Example: Top-down for Yang-Mills theory

Neglect all non-primitively divergent Green functions. — Self-contained.
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Example: Top-down for Yang-Mills theory

Neglect all non-primitively divergent Green functions. — Self-contained.

Full propagator equations (two-loop diagrams!):
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Example: Top-down for Yang-Mills theory

Neglect all non-primitively divergent Green functions. — Self-contained.

Full propagator equations (two-loop diagrams!):

i j‘l_+ i j’lﬁz O T T N R W
727 J—e_l 7% A]

S T R A

Truncated three-point functions: Truncated four-gluon vertex:

)4

Ty 5
v Loy ok
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Automated derivation

Derivation by hand becomes tedious:
o Large Lagrangians.
o Higher Green functions.
o Larger truncations.

o Error-prone.
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Automated derivation

Derivation by hand becomes tedious:
o Large Lagrangians.
o Higher Green functions.
o Larger truncations.
Qo

Error-prone.

splqg. ql]

20’ Ncz1oamAly, gs-y-2spia, ql),

Vy las-y+-2spld, g
r -¥2-sp[p, g] -sp(p, gl] -sp[g, gl
DAAA(x2-y+25p[p, Q). @5-%2-25p[ps ql]. - > - = - . Dgligs] Dgllgs - x2-25sp[p. ql]] Dgl
" N {x2+¥-+2sp[ps q)} (g5+-%x2-2sp[ps ql])

splps al® (sp(ps al]’spla. ql] (¥ -opla, @l]) +as x2 (y (9a5+6 (x2+¥]) + (5a5-6 %210y} ep[q. al]} - splps @l] (a@= ¥ (5 a
sp(ps a]” (2sp(p, a11® (asv -spla, q1]?) «sp(p, a1] (asv (10as?+ (-5%x2-3y) y+as (19x2+3v)) + (3as’ +8.as x2 v - 21 gs®

as %2 (v (-9gs?+3x2? 27 x2y+3y?-2qs (x2+v)) +(-10ags?~qgs (-3 x2-19 y) +x2 (3x2-5y)) sp[a, gl] = (-16 gs -7 x2 - 11

spip, ql)?(gs (-16qs-11x2 - Ty) v+ |

. 12 fant B
sp[p. 9] (sp[P. ql]

qs2—qs (-9 x2-19y) -2y (5x2+-3¥))|sp[qg, ql] + (-5gs+12 (x2-¥}) sp[q, ql'z—

sp[a, ql] (gs+sp(a, ql]) +sp(ps al]’ (gsy (7Tas+11x2+16y) « (-6 gs®+y (I x2+5y) + gs (-10 x2+ 19 y)

gsx2 [y (-3as’-10qs? (x2+y) -6x2y (x2+y)-gs (-3x2"-19x2y-3v?)) - (-6qs’+qs’ (-21x2-32¥) +qs (-9x2" -60x2y

(-15qs®-15x2? 2 qs (-46x2-41y)-41x2y-12y?) sp[a, q1]%+ (-Tgs-16 x2-11y) sp[q. q1]°) +sp(p, a1]? (gs ¥ [-15 «
(3as®+qgs? (5x2-39y) +qs (-81x2-39y) y+vy> (5x2+3y)) sp[a, ql] - (12 gs?+12x2? 23 x2y+12y +3gs (x2+v)] sp[
spip, ql] (gsy (6qs®+qs? (32x2:21y)+qs (25x2?-60x2y-9y?)-x2 (3x2?+25x2y+15y?)) - (15gs® (x2+y) +x2y [-3x

(-3gs?+x2? (-3x2-5y)+gs® (39%x2-5y) +gs x2 (39 x2+81y}) spla, al 6qs’+qgs (19%x2-10y) + x2 (5%x2:9 v}) sp

x2v (-splp, al]® (gs-spla, al)) +sp(p, a1)® (s (6as-6x2+9v) + (10gs+6x2+-53v) spla, al)) -as (s v-spla. al]?) (x2 (-

(6g5-9x2+6y) spla, ql1?+splqg. ql]®) «sp(p. ql1® (gs (-3qs®-3x2%+qs (-Tx2-2y)-2x2y-9y?)+(-3x2?+3x2¥-

sp(p, al]? (gs (-3 s’ (2x2+y) -as (-6x2% 19 x2y-10y?) v (-3x2® _10x2y-3v?])+(-3gs’-25as” (x2-¥) +as

15 x2

(-12gs”-15x27 ~46x2y-15y -4l gs (x2-y)) spla, al1®+ (-11gs-16x2-7 y) spla, q1]°) -

Markus Q. Huber University of Graz June 30, 2016 10/22



Introduction Yang-Mills theory QCD Summary and conclusions

Automated derivation

Derivation by hand becomes tedious:
o Large Lagrangians.
o Higher Green functions.
o Larger truncations.

o Error-prone.

o Automated derivation of DSEs and flow equations:
Mathematica package DoFun [Alkofer, MQH, Schwenzer '08; MQH, Braun '11]
http://tinyurl.com/dofun?2
o Framework for numeric handling:
C++ program CrasyDSE [MQH, Mitter '11]
http://tinyurl.com/crasydse
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Landau gauge, vacuum:
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Landau gauge, vacuum:
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Go ahead and calculate . ..

Landau gauge, vacuum:

Summary and conclusions

G.[plj B DY)
Aoz |
ix
e s T e T ¥ ,Ml:‘] .
Coulomb and linear covariant gauges, vacuum:
D% (ppa)
) T@bare, cos(a)  A@bare, cos(a)
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Go ahead and calculate . ..

Summary and conclusions

Landau gauge, vacuum:

lal

L)

A0

E pldfev
e L = e E e B e e LRI R

Coulomb and linear covariant gauges, vacuum:
0¥ (.7 2ri3)

D*%(p.p.a)
15

&
0.001

1000, 106
160000, %10
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Go ahead and calculate . ..

Landau gauge, vacuum:

lal

25 A0

e t———p 4  sGaV] e UL { s R

Coulomb and linear covariant gauges, vacuum:

0¥ (.7 2ri3)
D*%(p.p.a)
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Go ahead and calculate . ..

Landau gauge, vacuum:

G.[plj B DY)
Aoz ] j[
" I
- | ;
Coulomb and linear covariant gauges, vacuum:
(¢ 2ni3)

D*%(p.p.a)
15

&
0.001

1000, 106
160000, %10

o oo

Landau gauge, non-zero temperatures:

T=0.9587,
ao?
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Go ahead and calculate . ..

Landau gauge, vacuum:
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(¢ 2ni3)

D*%(p.p.a)
15

o
0.001

1000, 106
160000, %10

o oo

Landau gauge, non-zero temperatures:

T=0.9587, oMot T2Te
ao?

Markus Q. Huber University of Graz June 30, 2016 11/22



Introduction Yang-Mills theory Qcp Summary and conclusions

Go ahead and calculate

Landau gauge, vacuum:

G(p) B DU )

j 2 o [ R
\ i L il .

Coulomb and linear covariant gauges, vacuum:

(¢ 2ni3)

D*%(p.p.a)
15

Tgeare, coste)  AGbare, costc)

&
0.001

1000, 000, 1-%10°¢

o T o
Landau gauge, non-zero temperatures:
T=0.987, oMt T2Te Dree o) T004Te

e
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... how do we know that the results are trustworthy?
— Compare with experiment (requires further calculations).
— Compare with other methods.

Lattice results
Available for

- Vacuum

o Propagators
o T >0

o Three-point functions (restricted
kinematics)
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But. ..

... how do we know that the results are trustworthy?
— Compare with experiment (requires further calculations).
— Compare with other methods.

Lattice results

Available for

- Vacuum

©

Propagators
T>0

Three-point functions (restricted
kinematics)

(]

©

o u>07
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But. ..

... how do we know that the results are trustworthy?
— Compare with experiment (requires further calculations).
— Compare with other methods.

Lattice results
Available for

- Vacuum

©

Propagators
T>0

Three-point functions (restricted
kinematics)

w> 07

(]

©

©

©

Four-point functions?
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But. ..

... how do we know that the results are trustworthy?
— Compare with experiment (requires further calculations).
— Compare with other methods.

Lattice results — Comparison with lattice is helpful,
Available for but finally self-consistent checks are
required.
> Vacuum
P Two words of caution:
o Propagators o One cannot assume naturally that
o T >0 the hierarchy is the same for all T
o Three-point functions (restricted and p.
kinematics) o Even the effect of a single
o p>0? correlation function is difficult to
@ Four-point functions? estimate.
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Example: What do we need to go beyond modern QCD
phase diagram calculations?

Beyond effective interaction approximation: v’ [Fischer, Liicker, Welzbacher '14]

Input for DSEs:
o model for quark-gluon vertex (parameters fixed at u = 0)

o fits for gluon propagators at i = 0 from the lattice
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Possible improvements:
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Introduction Yang-Mills theory QCD Summar: y and conclusions

Example: What do we need to go beyond modern QCD
phase diagram calculations?

Beyond effective interaction approximation: v’ [Fischer, Liicker, Welzbacher '14]

Input for DSEs:
o model for quark-gluon vertex (parameters fixed at u = 0)

o fits for gluon propagators at i = 0 from the lattice

Possible improvements:

o fully dynamical propagators — require other vertices

o fully dynamical quark-gluon vertex — requires propagators & other vertices

Ultimately, full control over Yang-Mills part required!
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Yang-Mills theory

Up to now
(separately and partly combined):

o Propagators
o Three-point functions

o Four-gluon vertex (subset of
dressings)
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Yang-Mills theory

Up to now Challenges:
(separately and partly combined):
o Propagators o Find truncation.
o Three-point functions o Solve large system of equations.
o Four-gluon vertex (subset of o Spurious (quadratic) divergences in
dressings) gluon propagator: Consistent

subtraction [MQH, von Smekal, '14]7
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Testing truncations

Switch to three dimensions:
o UV finite: no renormalization, no anomalous running

o Spurious divergences easier to handle

= Many complications from d = 4 absent!

In particular: Spurious divergences of 'simple’ enough form (o< aA + b InA).

Quantitative study of truncation effects possible:
Vary equations and truncations.
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Testing truncations

Switch to three dimensions:
o UV finite: no renormalization, no anomalous running

o Spurious divergences easier to handle

= Many complications from d = 4 absent!

In particular: Spurious divergences of 'simple’ enough form (o< aA + b InA).

Quantitative study of truncation effects possible:
Vary equations and truncations.

Truncation

Complete system of propagators, three-point function and four-gluon vertex.
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Varying the four-gluon vertex

How stable is the truncation? ‘
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Varying the four-gluon vertex

Introduction

How stable is the truncation? ‘

DM*(pc)
25 :
H ———  tree-level
. 20 FREEEE G
Compare: s — v
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Summary results d = 3 Yang-Mills system

o Stability: Deforming the system has a minor effect.
o Vertices close to tree-level.

o Two-loop diagrams: Important in gluon propagator, much less in vertices.
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Cancellations in gluonic vertices

Three-gluon vertex:
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Summary and conclusions
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Cancellations in gluonic vertices
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Coupling to quarks

Common lore: Quarks are easy in functional equations.

More precise: Quarks are easier than on the lattice (chiral symmetry) but still
complicated.

Quark-gluon vertex: Often models are used — effective interaction between
quarks and gluons. Makes life a lot easier, but . ..

Explicit quark-gluon vertex solution

[Hopfer '14; Windisch '14; Mitter, Pawlowski, Strodthoff '14; Williams, Fischer, Heupel '15]
gi(p%.p*,27t13) gi(p%.p%,27t13)

p[GeV’]

[Blum, Alkofer, MQH,

Windisch '15]
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— Also non-tree-level dressings become important.
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First step: Unquenching of propagators

Subtraction of spurious divergences as in Yang-Mills part [MQH, von Smekal '14]!
Models for vertices.
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— Poster by Contant. [Contant, MQH, unpublished]
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Summary and conclusions

Introduction

o Functional equations: Non-perturbative approach to QCD.

o Calculations of propagators, vertices and partially mixed systems show a
coherent picture.

o Top-down approach provides a self-contained description.
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Summary and conclusions

Introduction

o Functional equations: Non-perturbative approach to QCD.
o Calculations of propagators, vertices and partially mixed systems show a

coherent picture.
o Top-down approach provides a self-contained description.

Yang-Mills QCD

o Vertices 'simple’. o Quark-gluon vertex 'complicated’.

o Proper control of gluonic sector
important for full QCD.

o Gluon propagator: basic quantity, still challenging: spurious divergences,
RG resummation.
o Truncation tests in d = 3: Stability reached (in vacuum).
o Varying system of equations.
o Varying equations of system.
— Similar behavior in d = 4 expected.
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Summary and conclusions

Introduction

o Functional equations: Non-perturbative approach to QCD.
o Calculations of propagators, vertices and partially mixed systems show a

coherent picture.
o Top-down approach provides a self-contained description.

Yang-Mills QCD

o Vertices 'simple’. o Quark-gluon vertex 'complicated’.

o Proper control of gluonic sector
important for full QCD.

o Gluon propagator: basic quantity, still challenging: spurious divergences,
RG resummation.
o Truncation tests in d = 3: Stability reached (in vacuum).
o Varying system of equations.
o Varying equations of system.
— Similar behavior in d = 4 expected.

Thank you for your attention.
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Results: Three-point functions

Introduction

Dressings:

AP*P%P%) \'
14

o Maximum position shifted.
o Bump height ok.
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:: o Linear IR divergence.
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Results: Propagators
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Summary results d = 3 Yang-Mills system

o Stability: Deforming the system has a minor effect.
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o Stability: Deforming the system has a minor effect.

o Vertices close to tree-level.

o Two-loop diagrams: Important in gluon propagator, much less in vertices.

Discrepancies with lattice
Reasons unclear.

Possible explanation: Gribov
problem.
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Example: Various solutions for
ghost dressing found.
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Summary results d = 3 Yang-Mills system

o Stability: Deforming the system has a minor effect.

o Vertices close to tree-level.

o Two-loop diagrams: Important in gluon propagator, much less in vertices.

Discrepancies with lattice
Reasons unclear.

Possible explanation: Gribov
problem.

Why is it so stable?

Markus Q. Huber University of Graz

Example: Various solutions for
ghost dressing found.
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Couplings

Perturbatively the couplings must agree due to Slavnov-Taylor identities.

Markus Q. Huber University of Graz June 30, 2016 26/22



QCD Summary and conclusions

Yang-Mills theory

Introduction
Couplings

Perturbatively the couplings must agree due to Slavnov-Taylor identities.

2 -
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= Good agreement down to a few GeV!
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