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Outline  

• Start from a QCD-inspired model of hadron structure 

 

• Ask how that internal structure is modified in-medium 

 

• This naturally leads to saturation  

  + predictions for all hadrons (e.g. hypernuclei...) 

 

• Derive effective forces (Skyrme type): apply to finite nuclei 

 

• Test predictions for quantities sensitive to internal  

  structure: DIS structure functions, form factors in-medium.... 
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Rutherford 

Discovered that alpha particles went  

straight  through matter – most of the time 

 

 

Occasionally scatter very hard  

– back the way they came! 

 

 

Concluded matter is mainly empty space! 

 

 

There is a heavy nucleus surrounded  

at a (comparatively great distance by electrons)  
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• Since the neutron was discovered by  

    Chadwick, nuclei have been built from  

neutrons and protons, with exactly the  

same properties in-medium as outside,  

interacting through the exchange of  

pions and other mesons 

 

• BUT is that the whole story?  

 

• After all, along came QCD in the 1970s! 

 

 

 

 

BUT regarded as irrelevant to nuclear structure............ 
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D. Alan Bromley (Yale) to Stan Brodsky in 1982 

   “Stan, you have to understand --  in nuclear physics 

we are only interested in how protons and neutrons 

make up a nucleus.  

 We are not interested in what is inside of a proton.” 
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Fundamental Question for Nuclear Physics  

• Is the nucleon                     ? 

 

• i.e. When immersed in a nuclear medium with 

applied scalar field strength of order half its mass 

is it really unchanged??   

 

• When looked at in the context of QCD as the theory 

of the strong force clearly  

 

• Is this irrelevant to nuclear structure?    

 

• Indeed, we argue it is of fundamental importance.....      

NO 

NO 
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A different approach : QMC Model 

• Start with quark model (MIT bag/NJL...) for all hadrons 

 

• Introduce a relativistic Lagrangian  

with σ, ω and ρ mesons coupling  

to non-strange quarks 

 

• Hence only 3 parameters :  gq
 σ,ω,ρ 

 

− determine by fitting to saturation  

   properties of nuclear matter  

   (ρ0 ,  E/A and symmetry energy) 

 

• Must solve self-consistently for the internal structure  of 

baryons in-medium 

(Guichon, Saito, Tsushima et al., Rodionov et al. 

- see Saito et al., Progress Part. Nucl. Phys. 58 (2007) 1 for a review) 
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Effect of scalar field on quark spinor  

• MIT bag model: quark spinor modified in bound nucleon 

 

 

 

• Lower component enhanced by attractive scalar field 

 

 

 

• This leads to a very small (~1% at ρ0 ) increase in bag radius 

 

• It also suppresses the scalar coupling to the nucleon as the 

scalar field increases 

 

 

• This is the “scalar polarizability”: a new saturation mechanism 

    for nuclear matter 

Ψ  = 

 =  ∫ ψ ψ  dV 

_ 
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Quark-Meson Coupling Model (QMC):  
Role of the Scalar Polarizability of the Nucleon 

The response  of the nucleon internal structure to the  

  scalar field is of great interest… and importance 

     
2
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Non-linear dependence through the scalar polarizability 

                            d ~ 0.22 R in original QMC (MIT bag) 

Indeed, in nuclear matter at mean-field level (e.g. QMC), 

 this is the ONLY place the response of the internal  

structure of the nucleon enters.   
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Summary : Scalar Polarizability  

  

 

Consequence of polarizability in atomic physics is 

   many-body forces: 

 

  

  

 

 

 

  − same is true in nuclear physics: 

  − scalar polarizability is natural source 

      of 3-body force 

V = V12 + V23 + V13 + V123 
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Binding of hadrons immersed in matter 
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Mesons in Nuclei 

• At Hartree level mesons like ω, η and η’ contain light 

quark-anti-quark pairs  

 

• Repulsive vector potential cancels for q and q 

 (s and s do not couple to σ, ω and ρ) 

 

• Thus mesons must feel attraction associated with the  

  mean scalar field (Saito et al., Phys.Rev. C55 (1997) 2637-2648) 

 

• Initial estimates significantly underestimated 

absorption of the ω, which adds repulsion 

 

 − but V. Metag finds hint of mild  

     attraction in C : -20 ± 25 ± 10 MeV  

 

 

_ 

_ 

.... more later in this session from Metag 
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Hyperons 
 

•  Derive  N,  N,   … effective forces in-medium   

  with no additional free parameters 

 

• Attractive and repulsive forces (σ and ω mean fields)  

both decrease as # light quarks decreases 

 

• NO Σ hypernuclei are bound! 

 

• Λ bound by about 30 MeV in nuclear matter (~Pb) 

 

• Miniscule spin-orbit force for Λ is natural  

 

• Nothing known about Ξ hypernuclei – JPARC!  
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Λ- and Ξ-Hypernuclei in QMC 

Predicts Ξ – hypernuclei bound by 10-15 MeV 

  −        to be tested at J-PARC 
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Report a very accurate pulsar 

mass much larger than seen  

before : 1.97 ± 0.04 solar mass 

 

Claim it rules out hyperons 

 (particles with strange quarks 

 - ignored our published work!) 

J1614-2230 



Consequences of QMC for Neutron Star  

Rikovska-Stone et al., NP A792 (2007) 341 
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Finite nuclei 
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Derivation of Density Dependent Effective Force 

• Start with classical theory of MIT-bag nucleons with 

structure modified in medium to give Meff (σ). 

 

• Quantise nucleon motion (non-relativistic),  

expand in powers of derivatives 

 

• Derive equivalent, local energy functional: 
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Derivation of effective Force (cont.) 

Note the totally new, subtle density dependence 

Spin-orbit 

force  

predicted! 



Page 21 

Systematic Study of Finite Nuclei 
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Systematic approach to finite nuclei 
 

    J.R. Stone, P.A.M. Guichon, P. G. Reinhard & A.W. Thomas: 

              ( Phys Rev Lett, 116 (2016) 092501 ) 

         
• Constrain 3 basic quark-meson couplings (gσ

q, gω
q, gρ

q ) so 

  that nuclear matter properties are reproduced within errors 

 

  -17 < E/A < -15 MeV 

   0.14 < ρ0  < 0.18 fm-3   

         28 < S0 < 34 MeV 

          L > 20 MeV 

   250 < K0 < 350 MeV 

 

• Fix at overall best description of finite nuclei (+2 pairing pars) 

 

• Benchmark comparison: SV-min 16 parameters (11+5) 



Page 23 

Overview of 106 Nuclei Studied – Across Periodic Table 

Element Z N Element Z N 

C 6 6 -16 Pb 82 116 - 132 

O 8 4 -20 Pu 94 134 - 154 

Ca 20 16 – 32 Fm 100 148 - 156 

Ni 28 24 – 50 No 102 152 - 154 

Sr 38 36 – 64 Rf 104 152 - 154 

Zr 40 44 -64 Sg 106 154 - 156 

Sn 50 50 – 86 Hs 108 156 - 158 

Sm 62 74 – 98 Ds 110 160 

Gd 64 74 -100 

N Z N Z 

20 10 – 24 64 36 - 58 

28 12 – 32 82 46 - 72 

40 22 – 40 126 76 - 92 

50 28 – 50 

i.e. We look at most challenging cases of p- or n-rich nuclei 
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Overview 

Stone et al., PRL (2016) 
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Superheavies : 0.1% accuracy 

Stone et al., PRL (2016) 
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Deformation in Gd (Z=64) Isotopes 
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Spin-orbit splitting 

Element States Exp   
[keV] 

QMC 
 [keV] 

SV-bas 
[keV] 

O16 proton 1p1/2 - 1p3/2 6.3 (1.3)a) 5.8 5.0 

neutron 1p1/2 - 1p3/2 6.1 (1.2)a) 5.7 5.1 

Ca40 proton 1d3/2 - 1d5/2    7.2 b)    6.3 5.7 

neutron 1d3/2 - 1d5/2    6.3 b) 6.3 5.8 

Ca48  proton 1d3/2 - 1d5/2    4.3 b) 6.3 5.2 

neutron 1d3/2 - 1d5/2    5.3 5.2 

Sn132 proton 2p1/2 - 2p3/2 1.35(27)a) 1.32 1.22 

neutron 2p1/2 - 2p3/2 1.65(13)a) 1.47 1.63 

neutron 2d3/2 - 2d5/2    2.71 2.11 

Pb208 proton 2p1/2 - 2p3/2 0.91 0.93 

neutron 3p1/2 - 3p3/2 0.90(18)a) 1.11 0.89 
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Shape evolution of Zr (Z=40) Isotopes 

• Shape co-existence sets in at N=60 – Sotty et al.,PRL115 (2015)172501 

• Usually difficult to describe 

            – e.g. Mei et al., PRC85, 034321 (2012) 

Stone et al., PRL (2016) 
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Summary: Finite Nuclei 

• The effective force was derived at the quark level 

based upon changing structure of bound nucleon  

 

• Has many less parameters but reproduces nuclear 

properties at a level comparable with the best 

phenomenological Skyrme forces 

 

• Looks like standard nuclear force 

 

• BUT underlying theory also predicts modified 

internal structure and hence modified  

    −  DIS structure functions 

    −  elastic form factors...... 
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Nuclear DIS Structure Functions 

To address questions like this one MUST start  

 with a theory that quantitatively describes  

  nuclear structure – very, very few examples..... 
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• Observation stunned and electrified the  

 HEP and Nuclear communities 30 years ago 

 

• What is it that alters the quark momentum in the nucleus?  

Classic Illustration:  The EMC effect 

J. Ashman et al., Z. 

Phys. C57, 211 (1993) 

 

J. Gomez et al., Phys. 

Rev. D49, 4348 (1994) 

The EMC Effect: Nuclear PDFs 
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Theoretical Understanding 

• Still numerous proposals but few consistent theories 

 

• Initial studies used MIT bag1 to estimate effect of 

self-consistent change of structure in-medium 

− but better to use a covariant theory 

 

• For that Bentz and Thomas2 re-derived change of 

nucleon structure in-medium in the NJL model 

 

• This set the framework for sophisticated studies by 

Cloët and collaborators over the last decade 

1 Thomas, Michels, Schreiber and Guichon, Phys. Lett. B233 (1989) 43  
2 Bentz and Thomas, Nucl. Phys. A696 (2001) 138 
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Calculations for Finite Nuclei 

Cloët, Bentz &Thomas, Phys. Lett. B642 (2006) 210 (nucl-th/0605061) 

(Spin dependent EMC effect TWICE as large as unpolarized) 
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Ideally tested at EIC with CC 

 reactions  

Parity violating EMC will test this at JLab 12 GeV 



Page 35 

Modified Electromagnetic Form Factors In-Medium 
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Recent Calculations Motivated by:  
 
 E01-015, PR-04-015 – Chen, Choi & Meziani  

•Using NJL model with nucleon structure self-consistently 

  solved in-medium 

 

•Same model describing free nucleon form factors, structure  

  functions and EMC effect 
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Response Function 

RPA correlations repulsive 

Significant reduction in Response 

Function from modification of  bound-nucleon   

Cloët, Bentz & Thomas ( PRL 116 (2016) 032701)       
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Comparison with Unmodified Nucleon & Data 

Data: Morgenstern & Meziani 

Calculations: Cloët, Bentz & Thomas (PRL 116 (2016) 032701) 



Page 39 

Summary 

 

 

• Intermediate range NN attraction is STRONG Lorentz scalar 

 

• This modifies the intrinsic structure of the bound nucleon 

  −  profound change in shell model :  

     what occupies shell model states are NOT free nucleons 

 

• Scalar polarizability is a natural source of three-body  

   force/ density dependence of effective forces 

           − clear physical interpretation 

 

• Derived, density-dependent effective force gives  

    results better than most phenomenological Skyrme forces  
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Summary 

• Initial systematic study of finite nuclei very promising 

     − Binding energies typically within 0.3% across periodic table  

 

• Super-heavies (Z > 100) especially good  

      (average difference 0.1%) 

 

• Deformation, spin-orbit splitting and charge distributions 

all look good) 

 

• BUT need empirical confirmation:  

 − Response Functions & Coulomb sum rule (soon) 

 − Isovector EMC effect; spin EMC 

 − Your idea here....................... 
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Special Mentions…… 

Guichon Tsushima 
Stone 

Bentz Cloët 

Saito 

Whittenbury 



Page 42 



Page 43 

Key papers on QMC 

• Two major, recent papers: 

         1. Guichon, Matevosyan, Sandulescu, Thomas, 

               Nucl. Phys. A772 (2006) 1. 

           2. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502  

 

• Built on earlier work on QMC: e.g.          

         3. Guichon, Phys. Lett. B200 (1988) 235 

           4.  Guichon, Saito, Rodionov, Thomas, 

               Nucl. Phys. A601 (1996) 349 

 

• Major review of applications of QMC to many 

      nuclear systems: 

         5.    Saito, Tsushima, Thomas,  

                    Prog. Part. Nucl. Phys. 58 (2007) 1-167 (hep-ph/0506314)   
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References to: Covariant Version of QMC 

• Basic Model: (Covariant, chiral, confining version of NJL) 

 

•Bentz & Thomas, Nucl. Phys. A696 (2001) 138 

 

• Bentz, Horikawa, Ishii, Thomas, Nucl. Phys. A720 (2003) 95 

 

• Applications to DIS: 

 

• Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302 

 

• Cloet, Bentz, Thomas, Phys. Lett. B642 (2006) 210  

 

• Applications to neutron stars – including SQM: 

 

• Lawley, Bentz, Thomas, Phys. Lett. B632 (2006) 495 

 

• Lawley, Bentz, Thomas, J. Phys. G32 (2006) 667  
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Most recent studies  

• Whittenbury, Carrillo-Serrano & Thomas, arXiv: 1606.03158 

 

• Whittenbury, Matevosyan & Thomas, Phys. Rev. C93 (2016) 035807 

 

•  Whittenbury, Carroll, Thomas, Tsushima and Stone,  

 Phys. Rev. C89 (2014) 065801 
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Can we Measure Scalar Polarizability  
in Lattice QCD ? 

18th Nishinomiya Symposium:  nucl-th/0411014 

    −  published in Prog. Theor. Phys.  

• IF we can, then in a real sense we would be linking 

   nuclear structure to QCD itself, because scalar  

   polarizability is sufficient in simplest, relativistic  

   mean field theory to produce saturation 

 

 

• Initial ideas on this published :  

  the trick is to apply a chiral invariant scalar field 

  − do indeed find polarizability opposing applied  σ field 



Page 47 

Explicit Demonstration of Origin of 3-Body Force 

• Since early 70’s tremendous amount of work  

 in nuclear theory is based upon effective forces 

• Used for everything from nuclear astrophysics to  

 collective excitations of nuclei 

• Skyrme Force: Vautherin and Brink  

 

       Guichon and  Thomas, Phys. Rev. Lett. 93, 132502 (2004) 
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Constraints from nuclear matter 
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Quadrupole Deformation of Superheavies 

Stone et al., PRL (2016) 
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“Hot off the press” 

Traditionally very hard to describe 
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