The QCD Vacuum, Color Confinement, and Superconformal Properties of Hadron Physics

Fixed $\tau=t+z / c$

Stan Brodsky
Humboldt Kolleg on Particle Physics
From the Vacuum to the Universe Kitzbühel Austria
June 29, 2016

Stanford University

with Guy de Tèramond, Hans Günter Dosch, Cedric Lorcè, Alexandre Deur
Craig Roberts, Robert Shrock, Peter Tandy, Prem Srivistava

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant
Where does the QCD Mass Scale come from?
QCD does not know what MeV units mean! Only Ratios of Masses Determined

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

Need a First Approximation to QCD
Comparable in simplicity to
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining
Origin of hadronic mass scale if $\mathbf{m}_{\mathbf{q}}=\mathbf{o}$

Each element of flash photograph illuminated at same LF time

$$
\tau=t+z / c
$$

Causal, frame-independent
Evolve in LF time

$$
P^{-}=i \frac{d}{d \tau}
$$

Eigenstate - independent of τ

$$
\begin{aligned}
& H_{L F}=P^{+} P^{-}-\vec{P}_{\perp}^{2} \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
\end{aligned}
$$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Measurements of hadron LF wavefunction are at fixed LF time

Like a flash photograph

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Bound States in Relativistic Quantum Field Theory:
Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$

$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Antv-de Sitter Space

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& \psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \\
& \left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
& \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0} . \\
& \\
& \\
& \text { Invariant underboosts! Independent of } P^{\mu}
\end{aligned}
$$

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
H_{L F}^{i n t}: \text { Matrix in Fock Space } \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
\end{gathered}
$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

$H_{L F}^{i n t}$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

ransverse density in momentum space

- Light Front Wavefunctions:
$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$ off-shell in P^{-}and invariant mass $\mathcal{M}_{q \bar{q}}^{2}$

$k_{\perp}(\mathrm{GeV})$
"Hadronization at the Amplitude Level"

Boost-invariant LFWF connects confined quarks and gluons to hadrons

Advantages of the Dirac's Front Form for Hadron Physics

Independent of Observer's Motion

- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent: no boosts, no pancakes!
- Same structure function measured at an $e p$ collider and Deep Inelastic Lepton Scattering in the proton rest frame
- No dependence on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no vacuum condensates!
- Profound implications for Cosmological Constant

"One of the gravest puzzles of theoreticalphysics"
 DARK ENERGY AND THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

$$
\begin{aligned}
& \left(\Omega_{\Lambda}\right)_{Q C D} \sim 10^{45} \\
& \left(\Omega_{\Lambda}\right)_{E W} \sim 10^{56}
\end{aligned} \quad \Omega_{\Lambda}=0.76(\text { expt })
$$

Extraordinary conflict between the conventional definition of the vacuum in quantum field theory and cosmology

Elements of the solution:
(A) Light-Front Quantization: causal, frame-independent vacuum
(B) New understanding of QCD "Condensates"
(C) Higgs Light-Front Zero Mode

Instant-Form Vacuum in QED

- Loop diagrams of all orders contribute
- Huge vacuum energy: $\rho_{\Lambda}^{Q E D} \simeq 10^{120} \rho_{\Lambda}^{\text {Observed }}$
- $\frac{E}{V}=\int \frac{d^{3} k}{2(2 \pi)^{3}} \sqrt{\vec{k}^{2}+m^{2}}$ Cutoff the quadratic divergence at $\mathrm{M}_{\text {Planck }}$
- Why not impose :Normal Ordering: ? Causality issues.
- Divide S-matrix by disconnected vacuum diagrams?
- In Contrast: Light-Front Vacuum trivial since plus momenta are positive and conserved: $k^{+}=k^{0}+k^{3}>0$

We view the universe as light reaches us along the light-front at fixed

$$
\tau=t+z / c
$$

Front Form Vacuum Describes the Empty, Causal Universe

Front-Form Vacuum in QED

$$
P^{+}=0 \underbrace{\overbrace{i}^{+}}_{\substack{e^{-} \\ k_{i}^{+}>0}} \sum_{i} k_{i}^{+} \neq P^{+}=0
$$

- All Light-Front Vacuum Graphs Vanish!
- Light-Front Vacuum is trivial since all plus momenta are positive and conserved.
- Zero modes ($\mathbf{k}^{+}=\mathbf{0}$) in vacuum allowed in some theories with massless fermions.
- Zero contribution to $\boldsymbol{\Lambda}$ from QED LF Vacuum
- Instant Form gives zero result if one normal orders.

Two Definitions of Vacuum State

Instant Form: Lowest Energy Eigenstate of InstantForm Hamiltonian

$$
H\left|\psi_{0}>=E_{0}\right| \psi_{0}>, E_{0}=\min \left\{E_{i}\right\}
$$

Eigenstate defined at one time t over all space; Acausal! Frame-Dependent

Front Form: Lowest Invariant Mass Eigenstate of Light-Front Hamiltonian

$$
H_{L F}\left|\psi_{0}>_{L F}=M_{0}^{2}\right| \psi_{0}>_{L F}, M_{0}^{2}=0 .
$$

Frame-independent eigenstate at fixed LF time $\tau=t+z / c$ within causal horizon

Front Form Vacuum Describes the Causal Universe

Light-Front vacuum can simulate empty universe
Shrock, Tandy, Roberts, sjb

- Independent of observer frame
- Causal
- Lowest invariant mass state $M=0$.
- Trivial up to $\mathbf{k}^{+}=\mathbf{o}$ zero modes-- already normal-ordering
- Higgs theory consistent with LF theory (Srivastava, sjb)
- QCD and AdS/QCD: "In-hadron"condensates (Maris, Tandy Roberts) -- GMOR satisfied.
- QED vacuum; no loops
- Zero cosmological constant from QED, QCD, EW

The QCD Vacuum, Color Confinement, and Superconformal Properties of Hadron Physics

Stan Brodsky
SI_를

Gell-Mann - Oakes - Renner Relation (1968)

P P̀ion's leptonic decay constant, mass-dimensioned observable which describes rate of process $\pi^{+} \xrightarrow{\longrightarrow} \mu^{+} \nu$

- Vacuum quark condensaté ζ : renormalization scale

Derived in current algebra using an effective pion field
How is this modified in QCD for a composite pion?

Ward-Takahashi Identity for axial current

$$
\begin{gathered}
P^{\mu} \Gamma_{5 \mu}(k, P)+2 i m \Gamma_{5}(k, P)=S^{-1}(k+P / 2) i \gamma_{5}+i \gamma_{5} S^{-1}(k-P / 2) \\
S^{-1}(\ell)=i \gamma \cdot \ell A\left(\ell^{2}\right)+B\left(\ell^{2}\right) \quad m\left(\ell^{2}\right)=\frac{B\left(\ell^{2}\right)}{A\left(\ell^{2}\right)} \\
\Gamma_{5 \mu}
\end{gathered}
$$

Identify pion pole at $P^{2}=m_{\pi}^{2}$

$$
\begin{gathered}
P^{\mu}<0\left|\bar{q} \gamma_{5} \gamma^{\mu} q\right| \pi>=2 m<0\left|\bar{q} i \gamma_{5} q\right| \pi> \\
f_{\pi} m_{\pi}^{2}=-\left(m_{u}+m_{d}\right) \rho_{\pi}
\end{gathered}
$$

Revised Gell Mann-Oakes-Renner Formula in QCD

$$
\begin{aligned}
& m_{\pi}^{2}=-\frac{\left(m_{u}+m_{d}\right)}{f_{\pi}^{2}}<0|\bar{q} q| 0> \\
& m_{\pi}^{2}=-\frac{\left(m_{u}+m_{d}\right)}{f_{\pi}}<0\left|i \bar{q} \gamma_{5} q\right| \pi>
\end{aligned}
$$

current algebra: effective pion field

vacuum condensate actually is an "in-hadron condensate"

Light-Front Pion Valence Wavefunctions

Angular
Momentum
Conservation

$$
J^{z}=\sum_{i}^{n} S_{i}^{z}+\sum_{i}^{n-1} L_{i}^{z}
$$

Summary on QCD 'Condensates'

- Condensates do not exist as space-time-independent phenomena -- consistent with LF Theory
- Property of hadron wavefunctions: Bethe-Salpeter or Light-Front: "In-Hadron Condensates"
- Find:

$$
\begin{gathered}
\frac{<0|\bar{q} q| 0>}{f_{\pi}} \rightarrow-<0\left|i \bar{q} \gamma_{5} q\right| \pi>=\rho_{\pi} \\
<0\left|\bar{q} i \gamma_{5} q\right| \pi>\text { similar to }<0\left|\bar{q} \gamma^{\mu} \gamma_{5} q\right| \pi>
\end{gathered}
$$

- Zero contribution to cosmological constant! Included in hadron mass
- ϱ_{π} survives for small $m_{q}-$ enhanced running mass from gluon loops / multiparton Fock states

Is there empirical evidence for a gluon vacuum condensate?

$$
<0\left|\frac{\alpha_{s}}{\pi} G^{\mu \nu}(0) G_{\mu \nu}(0)\right| 0>
$$

Look for higher-twist correction to current propagator

Shifman, Vainshtein, Zakharov
$e^{+} e^{-} \rightarrow X, \tau$ decay, $Q \bar{Q}$ phenomenology

$$
R_{e^{+} e^{-}}(s)=N_{c} \sum_{q} e_{q}^{2}\left(1+\frac{\alpha_{s}}{\pi} \frac{\Lambda_{\mathrm{QCD}}^{4}}{s^{2}}+\cdots\right)
$$

Determinations of the vacuum Gluon Condensate

$$
<0\left|\frac{\alpha_{8}}{\pi} G^{2}\right| 0>\left[\mathrm{GeV}^{4}\right]
$$

-0.005 ± 0.003 from τ decay. Davier et al. $+0.006 \pm 0.012$ from τ decay. Geshkenbein, Loffe, Zyablyuk $+0.009 \pm 0.007$ from charmonium sum rules

Ioffe, Zyablyuk

Consistent with zero

 vacuum condensate
Quark and Glwon condensates reside

within hadrons, not vacuum

Casher and Susskind Maris, Roberts, Tandy Shrock and sjb

- Bound-State Dyson Schwinger Equations
- AdS/QCD
- Implications for cosmological constant -Eliminates 45 orders of magnitude conflict

Chiral magnetism (or magnetohadrochironics)

Aharon Casher and Leonard Susskind Tel Aviv University Ramat Aviv, Tel-Aviv, Israel
(Received 20 March 1973)

I. INTRODUCTION

The spontaneous breakdown of chiral symmetry in hadron dynamics is generally studied as a vacuum phenomenon. ${ }^{1}$ Because of an instability of the chirally invariant vacuum, the real vacuum is "aligned" into a chirally asymmetric configuration.

On the other hand an approach to quantum field theory exists in which the properties of the vacuum state are not relevant. This is the parton or constituent approach formulated in the infinitemomentum frame. ${ }^{2}$ A number of investigations have indicated that in this frame the vacuum may be regarded as the structureless Fock-space vac-

Light-Front
Formalism uum. Hadrons may be described as nonrelativistic collections of constituents (partons). In this framework the spontaneous symmetry breakdown must be attributed to the properties of the hadron's wave function and not to the vacuum. ${ }^{3}$

Confinement contains condensates

Stanley J. Brodsky, ${ }^{1,2}$ Craig D. Roberts, ${ }^{3,4}$ Robert Shrock, ${ }^{5}$ and Peter C. Tandy ${ }^{6}$
${ }^{1}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA
${ }^{2}$ Centre for Particle Physics Phenomenology: CP ${ }^{3}$-Origins, University of Southern Denmark, Odense 5230 M, Denmark
${ }^{3}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{4}$ Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
${ }^{5}$ C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA
${ }^{6}$ Center for Nuclear Research, Department of Physics, Kent State University, Kent, Ohio 44242, USA
(Received 27 February 2012; published 21 June 2012)

Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass scales that fill all space-time, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence and incidentally expose misconceptions in a recent Comment.

DOI: 10.1103/PhysRevC.85.065202
PACS number(s): $12.38 . \mathrm{Aw}, 11.30 . \mathrm{Rd}$, 11.15.Tk, $24.85 .+\mathrm{p}$

Light-Front Quantization of the Standard Model

- $\operatorname{SU}(2) \times \mathrm{U}(\mathrm{I})$ GWS Model of Weak Interactions
- Non-Abelian Higgs Model in LG Gauge
- Unitary, renormalizable, no Gupta-Bleuler, Fadeev-Popov ghosts
- SSB: Perturbative vacuum plus zero mode field
- t'Hooft conditions satisfied
- Higgs field: Real field creates Higgs particle; imaginary components identified with longitudinal components of W, Z
- Higgs VEV replaced by zero mode

$$
\mathcal{L}=\partial_{+} \phi^{\dagger} \partial_{-} \phi+\partial_{-} \phi^{\dagger} \partial_{+} \phi-\partial_{\perp} \phi^{\dagger} \partial_{\perp} \phi-\mathcal{V}\left(\phi^{\dagger} \phi\right)
$$

where $V\left(\phi^{\dagger} \phi\right)=\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2} \quad$ with $\lambda>0, \mu^{2}<0$
Constraint equation: $\int d^{2} x_{\perp} d x^{-}\left[\partial_{\perp} \partial_{\perp} \phi-\frac{\delta V}{\delta \phi^{\dagger}}\right]=0$

$$
\begin{gathered}
\phi\left(\tau, x^{-}, x_{\perp}\right)=\omega\left(\tau, x_{\perp}\right)+\varphi\left(\tau, x^{-}, x_{\perp}\right) \\
\omega\left(\tau, x_{\perp}\right) \text { is a } k^{+}=0 \text { zero mode } \\
\omega=v / \sqrt{2} \text { where } v=\sqrt{-\mu^{2} / \lambda}
\end{gathered}
$$

Thus a c-number in LF replaces conventional Higgs VEV
Higgs coupling to gravity?
Possibility: $\partial_{\perp} \omega \neq 0$

Standard Model on the Light-Front

- Same phenomenological predictions
- Higgs field has three components
- Real part creates Higgs particle
- Imaginary part (Goldstone) become longitudinal components of \mathbf{W}, \mathbf{Z}
- Higgs VEV of instant form becomes $\boldsymbol{k}^{+}=\mathrm{L}$ LF zero mode!
- Analogous to a background static classical Zeeman or Stark Fields
\bullet Zero contribution to $\mathbf{T}_{\mu}{ }_{\mu}$; zero coupling to gravity

$H_{Q E D}$

$\left(H_{0}+H_{\text {int }}\right)|\Psi>=E| \Psi>$

QED atoms: positronium and muonium

Coupled Fock states

Effective two-particle equation
$\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)$

$$
\nabla_{e f f} \rightarrow T \Gamma(r)=-\frac{a}{\gamma}
$$

Semiclassical füst approximation to QED

SphericalBasis $\quad r, \theta, \phi$ Coulomb potential

Bohr Spectrum

Schrödinger Eq.

Light-Front QCD

Fixed $\tau=t+z / c$

$$
\begin{gathered}
\text { AdS/QCD } \\
\text { Soft-Wall Model } \\
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
\end{gathered}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

Light-Front Holography

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Unique

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

$$
\kappa \simeq 0.5 \mathrm{GeV}
$$

Confinement scale:

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Humboldt Kolleg
Kitzbühel Austria June 29, 2016

The QCD Vacuum, Color Confinement, and Superconformal Properties of Hadron Physics

Stan Brodsky SLAC

AdS/CFT

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

Dülaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dilaton-Modified $A d S_{5}$

Identical to Light-Front Bound State Equation!

$$
z \longmapsto \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Light-Front Holographic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and $A d S$ formula for $E M$ and gravitational current matrix elements and identical equations of mosson

Meson Spectrum in Soft Wall Model

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(\bar{J}-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

$$
m_{u}=m_{d}=0
$$

Humboldt Kolleg

Prediction from AdS/QCD: Meson LFWF

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

x

Note coupling

$$
k_{\perp}^{2}, x
$$

de Teramond, Cao, sjb
"Soft Wall" model
massless quarks

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

Same as DSE!
Provides Connection of Confinement to 74 adron Structure

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

De Tèramond, Dosch, sib

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$$
M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{\bar{q}}^{2}}{1-x}|X\rangle
$$

$$
\begin{gathered}
G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
G=u H+v D+w K \\
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
\end{gathered}
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identical to LF Hamiltonian with unique potential and dilaton!

- Dosch, de Teramond, sjb

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

dAFF: New Time Variable
$\tau=\frac{2}{\sqrt{4 u w-v^{2}}} \arctan \left(\frac{2 t w+v}{\sqrt{4 u w-v^{2}}}\right)$,

- Identify with difference of LF time $\Delta \mathbf{x}^{+} / \mathbf{P}^{+}$ between constituents
- Finite range
- Measure in Double-Parton Processes

Superconformal Quantum Mechanics

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K
\end{gathered}
$$

$$
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D
$$

generates the conformal algebra

$$
[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{~K}]=2 \mathrm{i} \mathrm{D}, \quad[\mathrm{~K}, \mathrm{D}]=-\mathrm{i} \mathrm{~K}
$$

Fubini and Rabinovici

Superconformal Quantum Mechanics

de Teramond
Dosch, Lorce, sjb

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad \begin{array}{c}
\text { two anti-commuting } \\
\text { fermionic operators }
\end{array} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \quad \text { Pauli Matrices } \\
Q=\psi^{+}\left[-\partial_{x}+W(x)\right], \quad Q^{+}=\psi\left[\partial_{x}+W(x)\right], \quad \begin{array}{c}
W(x)=\frac{f}{x} \\
\text { (Conformal) }
\end{array} \\
S=\psi^{+} x, \quad S^{+}=\psi x \quad \begin{array}{l}
\text { Introduce new spinor operators }
\end{array} \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K \quad Q \simeq \sqrt{H}, S \simeq \sqrt{K} \\
\{Q, Q\}=\left\{Q^{+}, Q^{+}\right\}=0, \quad[Q, H]=\left[Q^{+}, H\right]=0
\end{gathered}
$$

Superconformal Quantum Mechanics

Baryon Equation

Consider $R_{w}=Q+w S$;
w : dimensions of mass squared
$G=\left\{R_{w}, R_{w}^{+}\right\}=2 H+2 w^{2} K+2 w f I-2 w B \quad 2 B=\sigma_{3}$
Retains Conformal Invariance of Action
Fubini and Rabinovici
New Extended Hamiltonian G is diagonal:

$$
\begin{aligned}
& G_{11}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f-w+\frac{4\left(f+\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
& G_{22}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f+w+\frac{4\left(f-\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
& \text { Identify } f-\frac{1}{2}=L_{B}, \quad w=\kappa^{2} \\
& \text { Eigenvalue of } G: M^{2}(n, L)=4 \kappa^{2}\left(n+L_{B}+1\right) 49
\end{aligned}
$$

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \boldsymbol{s = 1 / 2 , \mathrm { P } = +}
\end{gathered}
$$

Meson Equation

both chiralities

$$
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J}
$$

$$
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \quad \text { Same k! }
$$

$S=0$, $I=\mid$ Meson is superpartner of $S=I / 2$, $I=\mid$ Baryon Meson-Baryon Degeneracy for $L_{50}=L_{B}+1$

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1 \quad \begin{gathered}
\text { ChiralSymmetry } \\
\text { of Eígenstate! }
\end{gathered}
$$

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Nucleon: Equal Probabilitysfor $\mathrm{L}=0, \mathrm{I}$

- Compute Dirac proton form factor using SU(6) flavor symmetry

$$
F_{1}^{p}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} V(Q, z) \Psi_{+}^{2}(z)
$$

- Nucleon AdS wave function

$$
\Psi_{+}(z)=\frac{\kappa^{2+L}}{R^{2}} \sqrt{\frac{2 n!}{(n+L)!}} z^{7 / 2+L} L_{n}^{L+1}\left(\kappa^{2} z^{2}\right) e^{-\kappa^{2} z^{2} / 2}
$$

- Normalization $\quad\left(F_{1}{ }^{p}(0)=1, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{2}(z)=1
$$

- Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$
V(Q, z)=\kappa^{2} z^{2} \int_{0}^{1} \frac{d x}{(1-x)^{2}} x^{\frac{Q^{2}}{4 \kappa^{2}}} e^{-\kappa^{2} z^{2} x /(1-x)}
$$

- Find

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different $\mathbf{L}^{\mathbf{z}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o. No mass-degenerate ${ }_{5}$ barity partners!

Superconformal Quantum Mechanics

de Tèramond, Dosch, sjb

Same slope

Dosch, de Teramond, Lorce, sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Same Regge Slope for Meson, Baryons:
Supersymmetric feature of had̛on physics

- Universal Regge slopes

Dosch, de Teramono Lorce, sjb

$$
M_{H}^{2}=4 \lambda(n+L)+\cdots
$$

Best fit for the value of the hadronic scale $\sqrt{\lambda}$ for the different Regge trajectories for baryons and mesons including all radial and orbital excitations using Eqs. (23) and (24). The dotted line is the average value $\sqrt{\lambda}=0.523 \mathrm{GeV}$; it has the standard deviation $\sigma=0.024 \mathrm{GeV}$. For the baryon sample alone the values are $0.509 \pm 0.015 \mathrm{GeV}$ and for the mesons 0.524 ± 0.023

Superconformal AdS Light-Front Holographic QCD (LFHQCD): Identical meson and baryon spectra!

$S=0, I=I$ Meson is superpartner of $S_{60} I / 2, I=I$ Baryon

Supersymmetry across the light and heavy-light spectrum

- Introduction of quark masses breaks conformal symmetry without violating supersymmetry

Supersymmetry across the light and heavy-light spectrum

Supersymmetric relations for mesons and baryons with b quarks

Features of Supersymmetric Equations

- J =L+S baryon simultaneously satisfies both equations of G with $L, L+1$ for same mass eigenvalue
- $J^{z}=L^{z}+1 / 2=\left(L^{z}+1\right)-1 / 2$

$$
S^{z}= \pm 1 / 2
$$

- Baryon spin carried by quark orbital angular momentum: $<\mathrm{J}^{\mathrm{z}}>=\mathrm{L}^{\mathrm{z}}+1 / 2$
- Mass-degenerate meson "superpartner" with $L_{M}=L_{B}+1$. "Shifted meson-baryon Duality"
Meson and baryon have same κ !
- quark-antiquark meson $\left.\left(\mathrm{L}_{\mathrm{M}}=\mathrm{L}_{\mathrm{B}+\mathrm{I}}\right)\right)$
- quark-diquark baryon (L_{B})
- quark-diquark baryon $\left(\mathrm{L}_{\mathrm{B}+\mathrm{I}}\right)$
- diquark-antidiquark tetraquark $\left(\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{\mathrm{B}}\right)$

- Universal Regge slopes $\lambda=\kappa^{2}$

$$
\begin{aligned}
& \text { contribution from 2-dim } \\
& \text { contribution from } A d S \text { and } \\
& \text { superconformal algebra } \\
& \chi(\text { baryons }, \text { tetraquarks })=+1
\end{aligned}
$$

New World of Tetraquarks

$$
3_{C} \times 3_{C}=\overline{3}_{C}+6_{C}
$$

Bound!

- Diquark: Color-Confined Constituents: Color $\overline{3}_{C}$
- Diquark-Antidiquark bound states $\overline{3}_{C} \times 3_{C}=1_{C}$

$$
\sigma(T N) \simeq 2 \sigma(p N)-\sigma(\pi N)
$$

$2[\sigma([\{q q\} N)+\sigma(q N)]-[\sigma(q N)+\sigma(\bar{q} N)]=[\sigma(\{q q\} N)+\sigma(\{q q\} N)]$
Candidates $f_{0}(980) I=0, J^{P}=0^{+}$, partner of proton

$$
a_{1}(1260) I=0, J^{P}=1^{+}, \text {partner of } \Delta(1233)
$$

New World of Tetraquarks

$$
3_{C} \times 3_{C}=\overline{3}_{C}+6_{C}
$$

Bound!

- Diquark Color-Confined Constituents: Color
- Diquark-Antidiquark bound states

Complete Regge spectrum in n , L

- Confinement Force Similar to quark-antiquark $\overline{3}_{C} \times 3_{C}=1_{C}$ mesons
- Isospin

$$
I=0, \pm 1, \pm 2 \text { Charge } \quad Q=0, \pm 1, \pm 2
$$

Universal Hadronic Features

- Universal quark light-front kinetic energy

Equals

Virial • Universal quark light-front potential energy

$$
\Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)
$$

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

- Universal Constant Term

$$
\begin{gathered}
\mathcal{M}_{\text {spin }}^{2}=2 \kappa^{2}\left(S+L-1+2 n_{\text {diquark }}\right) \\
M^{2}=\Delta \mathcal{M}_{L F K E}^{2}+\Delta \mathcal{M}_{L F P E}^{2}+\Delta \mathcal{M}_{\text {spin }}^{2}
\end{gathered}
$$

Some Features of $A d S / Q C D$

- Regge spectroscopy-same slope in n,Lfor mesons, baryons
- Chiral features for $m_{q}=0: \boldsymbol{m}_{\pi}=\boldsymbol{o}$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between badron masses and $\Lambda_{\overline{M S}}$

Superconformal AdS Light-Front Holographic QCD (LFHQCD)

 Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$The QCD Vacuum, Color Confinement, and Superconformal Properties of Hadron Physics

Stan Brodsky SLAC

$$
\begin{gathered}
\text { AdS/QCD } \\
\text { Soft-Wall Model } \\
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
\end{gathered}
$$

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Unique

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

$$
\kappa \simeq 0.5 \mathrm{GeV}
$$

Confinement scale:

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

- de Alfaro, Fubini, Furlan:
- Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Bjorken sum rule defines effective charge $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any pQCD scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$

Running Coupling from Modífied AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

Features of $A d S / Q C D$

- Color confining potential $\kappa^{4} \zeta^{2}$ and universal mass scale from dilaton

$$
e^{\phi(z)}=e^{\kappa^{2} z^{2}} \quad \alpha_{s}\left(Q^{2}\right) \propto \exp -Q^{2} / 4 \kappa^{2}
$$

- Dimensional transmutation $\Lambda_{\overline{M S}} \leftrightarrow \kappa \leftrightarrow m_{H}$
- Chiral Action remains conformally invariant despite mass scale DAFF
- Light-Front Holography: Duality of AdS and frame-independent LF QCD
- Reproduces observed Regge spectroscopy same slope in n, L, and J for mesons and baryons

Massless pion for massless quark

- Supersymmetric meson-baryon dynamics and spectroscopy: $\mathbf{L}_{\mathbf{M}}=\mathbf{L}_{\mathbf{B}}+\mathbf{I}$
- Dynamics: LFWFs, Form Factors, GPDs

Superconformal 2uantum
Mechanics
Fubini and Rabinovici

Tony Zee

"Quantum Field Theory in a Nutshell"

Dreams of Exact Solvability

"In other words, if you manage to calculate m_{P} it better come out proportional to $\Lambda_{Q C D}$ since $\Lambda_{Q C D}$ is the only quantity with dimension of mass around.

Light-Front Holography:

Similarly for m_{ρ}.

$$
m_{p} \simeq 3.21 \Lambda_{\overline{M S}}
$$

$$
\left.m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}\right]
$$

Put in precise terms, if you publish a paper with a formula giving m_{ρ} / m_{P} in terms of pure numbers such as 2 and π, the field theory community will hail you as a conquering hero who has solved QCD exactly."

$$
\begin{aligned}
\left(m_{q}\right. & =0) \\
m_{\pi} & =0
\end{aligned}
$$

$$
\frac{m_{\rho}}{m_{P}}=\frac{1}{\sqrt{2}}
$$

$$
\frac{\Lambda_{\overline{M S}}}{m_{\rho}}=0.455 \pm 0.031
$$

Partition of the Proton's Mass: Potential vs. Kinetic Contributions Virial Theorem
Color Confinement $\quad U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2} \quad \Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)$ $\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)$
Role of Quark Orbital Angular Momentum in the Proton
Equal L=0,I

Quark-Diquark Structure
Quark Mass Contribution $\Delta M^{2}=<\frac{m_{q}^{2}}{x}>$
from the Yukawa coupling to the Higgs zero mode
Baryonic Regge Trajectory

$$
M_{\mathrm{p}}^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right)
$$

Mesonic Supersymmetric Partners

$$
L_{M}=L_{B}+1
$$

Proton Light-Front Wavefunctions and Dynamical Observables

$$
\begin{aligned}
& \text { Observables } \\
& \psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \\
& \text { unctions }
\end{aligned}
$$

Form Factors, Distribution Amplitudes, Structure Functions
Non-Perturbative - Perturbative OCD Transition $Q_{0}=0.87 \pm 0.08 \mathrm{GeV} \overline{M S}$ scheme
Dimensional Transmutation:

$$
m_{p} \simeq 3.21 \Lambda_{\overline{M S}}
$$

$$
m_{\rho} \simeq 2.2 \Lambda_{\overline{M S}}
$$

- Hadronization at the Amplitude Level
- Diffractive dissociation of pion and proton to jets
- Factorization Scale for ERBL, DGLAP evolution: $\mathbf{Q}_{\mathbf{o}}$
- Calculate Sivers Effect including FSI and ISI
- Compute Tetraquark Spectroscopy: Sequential Clusters
- Update SU(6) spin-flavor symmetry
- Heavy Quark States: Supersymmetry, not conformal
- Compute higher Fock states; e.g. Intrinsic Heavy Quarks
- Nuclear States - Hidden Color
- Basis LF Quantization

Vary, sjb

QCD Myths

- Anti-Shadowing is Universal
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- Heavy quarks only from gluon splitting
- Renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- QCD gives Io42 22 to the cosmological constant
- Colliding Pancakes at RHIC

The QCD Vacuum, Color Confinement,
and Superconformal Properties of Hadron Physics
79

Stan Brodsky
SLAC

The QCD Vacuum, Color Confinement, and Superconformal Properties of Hadron Physics

Fixed $\tau=t+z / c$

Stan Brodsky
Humboldt Kolleg on Particle Physics
From the Vacuum to the Universe Kitzbühel Austria
June 29, 2016

Stanford University

with Guy de Tèramond, Hans Günter Dosch, Cedric Lorcè, Alexandre Deur
Craig Roberts, Robert Shrock, Peter Tandy, Prem Srivistava

