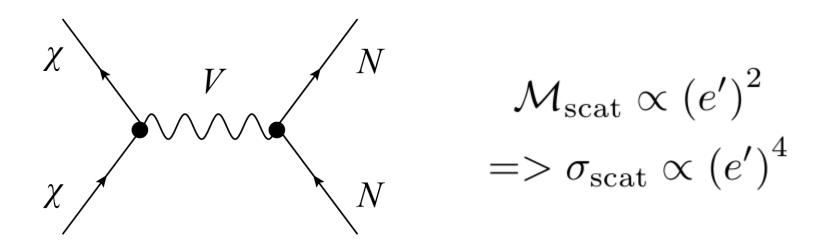
Manifestations of Dark Matter and Variation of the Fundamental Constants in Atomic and Astrophysical Phenomena

V. Flambaum, Y. Stadnik, B. Roberts, V. Dzuba


University of New South Wales, Sydney, Australia

Physical Review Letters 116, 023201 (2016)
Physical Review Letters 115, 201301 (2015)
Physical Review Letters 114, 161301 (2015)
Physical Review Letters 113, 151301 (2014)
Physical Review Letters 113, 081601 (2014)
Physical Review D 89, 043522 (2014)
Physical Review D 90, 096005 (2014)
European Physical Journal C 75, 110 (2015)
arXiv:1511.00447, 1604.04559, 1605.04028
Nature Physics 12, 465 (2016)

Motivation

Traditional "scattering-off-nuclei" searches for heavy WIMP dark matter particles (χ) have not yet produced a strong positive result.

Observable is **quartic** in the interaction constant *e*, which is extremely small!

Motivation

We propose to search for other well-motivated forms of dark matter: *low-mass spin-0 particles*, which form a *coherently** *oscillating classical*[†] field:

 $\varphi(t) = \varphi_0 \cos(m_{\varphi} t)$, via effects that are <u>linear</u> in the interaction constant (Λ_X = new-physics energy scale).

$$\mathcal{L}_{\text{eff}} = \frac{\phi}{\Lambda_X} X_{\text{SM}} X_{\text{SM}} \implies \mathcal{O} \propto \frac{1}{\Lambda_X}$$

Consideration of *linear effects* has already allowed us to improve on existing constraints on some interactions of dark matter by up to <u>15 orders of</u> <u>magnitude</u>, as well as derive the <u>first constraints</u> on some other interactions of dark matter.

* Coherently oscillating field => cold, $E_{\varphi} = m_{\varphi}c^2$ **†** $n_{\varphi}(\lambda_{dB}/2\pi)^3 >> 1$

Low-mass Spin-0 Dark Matter

The mass range $10^{-22} \text{ eV} \le m_{\varphi} \le 0.1 \text{ eV}$ is inaccessible to traditional "scattering-off-nuclei" and collider searches, but large regions are accessible to lowenergy atomic and molecular experiments that search for **oscillating signals** produced by $\varphi(t) = \varphi_0 \cos(m_{\varphi} t) \ [10^{-8} \text{ Hz} \le f \le 10^{13} \text{ Hz}].$

In particular, ultra-low-mass spin-0 DM with mass $m_{\phi} \sim 10^{-22}$ eV has been proposed to resolve several long-standing astrophysical puzzles (cusp-core, missing satellite and too-big-to-fail problems, etc.)

Coherence of Galactic DM

Gravitational interactions between DM and ordinary matter during galactic structure formation result in the virialisation of the DM particles ($v_{vir} \sim 10^{-3} c$), which gives the galactic DM field a finite coherence time and finite coherence length:

$$\tau_{\rm coh} \sim \frac{2\pi}{m_{\phi} v_{\rm vir}^2} \sim 10^6 \left(\frac{2\pi}{m_{\phi}}\right) \implies \frac{\Delta f}{f} \sim 10^{-6}$$
$$l_{\rm coh} \sim \frac{1}{m_{\phi} v_{\rm vir}} \sim \frac{10^3}{m_{\phi}} = \frac{10^3}{2\pi} \lambda_{\rm Compton}$$

Low-mass Spin-0 Dark Matter

Dark Matter

Scalars: Even-parity

- → 'Slow' evolution and oscillating variation of fundamental constants
 - Atomic clocks
 - Highly-charged ions
 - Molecules
 - Nuclear clocks
 - Laser interferometers

Pseudoscalars (Axions, ALPs): Odd-parity

- → Oscillating spindependent effects,
- *P*,*T*, Lorentz and Einstein symmetry violation
 - Atomic magnetometry
 - Ultracold neutrons
 - Solid-state magnetometry

Variation of fundamental constants (fine structure constant α , α_s , masses) due to Dark matter

" Fine tuning" of fundamental constants is needed for life to exist. If fundamental constants would be even slightly different, life could not appear!

Variation of coupling constants in space provide natural explanation of the "fine tuning": we appeared in area of the Universe where values of fundamental constants are suitable for our existence.

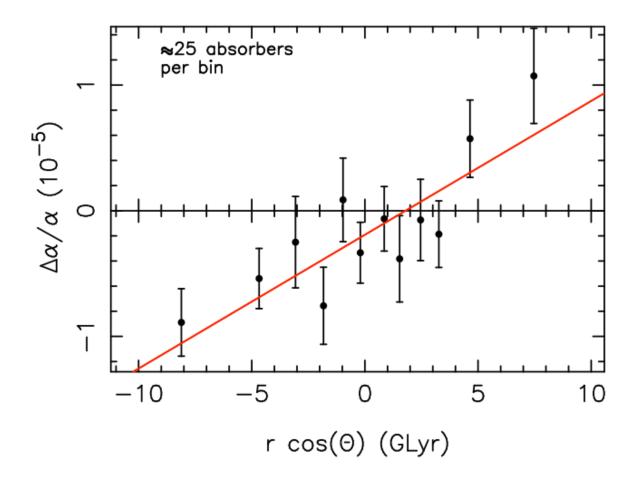
Source of the variation: Dark Matter?

We performed calculations to link change of atomic transition frequencies to change of fundamental constants: optical transitions, atomic calculations for quasar absorption spectra and for atomic clocks transitions in Al II, Ca I, Sr I, Sr II, In II, Ba II, Dy I, Yb I, Yb II, Yb III, Hg I, Hg II, TI II, Ra II, Th III ... $\omega = \omega_0 + \mathbf{q}(\alpha^2/\alpha_0^2 - 1)$

Molecular calculations

Microwave transitions: hyperfine frequency is sensitive to α , nuclear magnetic moments and nuclear radii. We performed atomic, QCD and nuclear calculations. Evidence for spatial variation of the fine structure constant $\alpha = e^2/2\varepsilon_0 hc = 1/137.036$

Quasar spectra


Webb, King, Murphy, Flambaum, Carswell, Bainbridge, PRL2011,MNRAS2012

 $\alpha(x) = \alpha(0) + \alpha'(0) x + ...$

x=r cos(ϕ), r=ct – distance (t - light travel time, c - speed of light)


Reconciles all measurements of the variation

Distance dependence

 $\Delta \alpha / \alpha$ vs BrcosO for the model $\Delta \alpha / \alpha$ =BrcosO+m showing the gradient in α along the best-fit dipole. The best-fit direction is at right ascension 17.4 ± 0.6 hours, declination -62 ± 6 degrees, for which B = (1.1 ± 0.2) × 10⁻⁶ GLyr⁻¹ and m = (-1.9 ± 0.8) × 10-6. This dipole+monopole model is statistically preferred over a monopole-only model also at the 4.1 σ level. A cosmology with parameters (H₀, Ω_M , Ω_Λ) = (70.5, 0.2736, 0.726).

Keck & VLT dipoles independently agree, p=4%

Results for variation of fundamental constants: Clocks comparison

Source	Clock ₁ /Clock ₂	$d\alpha/dt/\alpha(10^{-16} \mathrm{yr}^{-1})$
Godun <i>et al</i> , 2014	Yb+opt/Yb+/Cs(hfs)	-0.07(0.21)
Leefer et al 2013	Dy/Cs(hfs)	-0.6(0.7)
Rosenband et al08	Hg+(opt)/Al+(opt)	-0.16(0.23)
Huntemann et al14	Yb+opt/Yb+/Cs(hfs)	-0.2(0.2)
Guena <i>et al</i> , 2012	Rb(hfs)/Cs(hfs)	3(2) ^a

^aassuming $m_{q,e}/\Lambda_{QCD} = Const$

Combined results: $d/dt \ln \alpha = -1.5(1.0) \times 10^{-17} \text{ yr}^{-1}$ $d/dt \ln(m_q/\Lambda_{QCD}) = 7(4) \times 10^{-15} \text{ yr}^{-1}$ $m_e /M_p \text{ or } m_e/\Lambda_{QCD} -0.1(1.0) \times 10^{-16} \text{ yr}^{-1}$

Low-mass Spin-0 Dark Matter

Dark Matter

Scalars: Even-parity

→ 'Slow' evolution and oscillating variation of fundamental constants

- Atomic clocks
- Highly-charged ions
- Molecules
- Nuclear clocks
- Laser interferometers

Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **115**, 201301 (2015)] Consider an oscillating classical *scalar* field, $\varphi(t) = \varphi_0 \cos(m_{\varphi} t)$, that interacts with SM fields (e.g. a fermion *f*) via *quadratic couplings* in φ .

$$\mathcal{L}_{f} = -\frac{\phi^{2}}{(\Lambda'_{f})^{2}} m_{f} \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_{f}^{\text{SM}} = -m_{f} \bar{f} f \quad => \quad m_{f} \rightarrow m_{f} \left[1 + \frac{\phi^{2}}{(\Lambda'_{f})^{2}} \right]$$
$$=> \frac{\delta m_{f}}{m_{f}} = \frac{\phi^{2}_{0}}{(\Lambda'_{f})^{2}} \cos^{2}(m_{\phi}t) = \left[\frac{\phi^{2}_{0}}{2(\Lambda'_{f})^{2}} + \frac{\phi^{2}_{0}}{2(\Lambda'_{f})^{2}} \cos(2m_{\phi}t) \right]$$
$$(\text{Slow' drifts [Astrophysics (high \rho_{\text{DM}}); BBN, CMB]} \quad \text{Oscillating variations (high precision)]}$$

Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, PRL 115, 201301 (2015)]

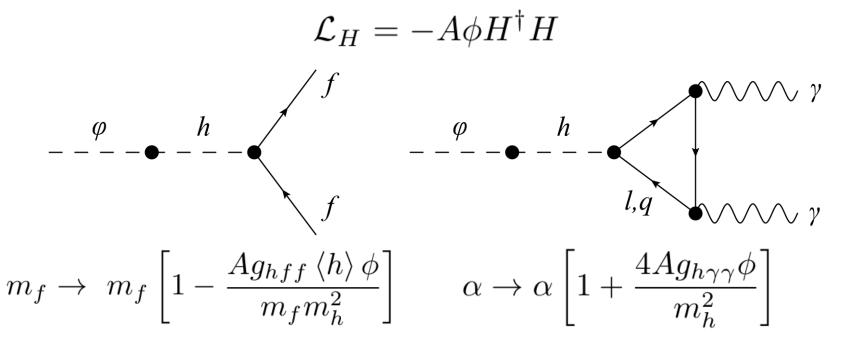
We can consider a wide range of quadratic-in- ϕ interactions with the SM sector:

Photon:

$$\mathcal{L}_{\gamma} = \frac{\phi^2}{(\Lambda_{\gamma}')^2} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \alpha \to \frac{\alpha}{1 - \phi^2 / (\Lambda_{\gamma}')^2} \simeq \alpha \left[1 + \frac{\phi^2}{(\Lambda_{\gamma}')^2} \right]$$

Fermions:

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f \implies m_f \to m_f \left[1 + \frac{\phi^2}{(\Lambda'_f)^2} \right]$$


Bosons W,Z (mediators of weak interactions):

$$\mathcal{L}_{V} = \frac{\phi^{2}}{(\Lambda_{V}')^{2}} \frac{M_{V}^{2}}{2} V_{\nu} V^{\nu} \implies M_{V}^{2} \to M_{V}^{2} \left[1 + \frac{\phi^{2}}{(\Lambda_{V}')^{2}} \right]$$

Dark Matter-Induced Oscillating Variation of the Fundamental Constants

Also possible to have linear-in- ϕ interactions with the SM sector, which may be generated, e.g., through the superrenormalisable interaction of ϕ with the Higgs boson*

[Piazza, Pospelov, PRD 82, 043533 (2010)].

* Produces logarithmically-divergent corrections to $(m_{\varphi})^2$, i.e., technically natural for $A < m_{\varphi}$. Minimum of potential is stable (without adding extra φ^4 terms) for $(A/m_{\varphi})^2 < 2\lambda$.

Astrophysical Constraints on 'Slow' Drifts in Fundamental Constants Induced by Scalar Dark Matter (BBN) [Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Largest effects of scalar dark matter are in the early Universe (highest $\rho_{DM} =>$ highest ϕ_0^2).
- Earliest cosmological epoch that we can probe is Big Bang nucleosynthesis (from $t_{weak} = 1$ s until $t_{BBN} = 3$ min).
- Primordial ⁴He abundance is sensitive to relative abundance of neutrons to protons (almost all neutrons are bound in ⁴He by the end of BBN).

<u>Weak interactions</u>: freeze-out of weak interactions occurs at $t_{weak} = 1s$ ($T_{weak} = 0.75$ MeV).

$$\begin{array}{l} p + e^{-} \rightleftharpoons n + \nu \\ n + e^{+} \rightleftharpoons p + \bar{\nu} \end{array} \qquad \left(\frac{n}{p}\right)_{\text{weak}} = e^{-(m_n - m_p)/T_{\text{weak}}} \end{array}$$

Astrophysical Constraints on 'Slow' Drifts in Fundamental Constants Induced by Scalar Dark Matter (CMB) [Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Weaker astrophysical constraints come from CMB measurements (lower ρ_{DM}).
- Variations in α and $m_{\rm e}$ at the time of electron-proton recombination affect the ionisation fraction and Thomson scattering cross section, $\sigma_{\rm Thomson} = 8\pi\alpha^2/3m_{\rm e}^2$, changing the mean-free-path length of photons at recombination and leaving distinct signatures in the CMB angular power spectrum.

$$\Lambda_{\gamma}' \gtrsim \frac{1 \text{ eV}^2}{m_{\phi}}, \ \Lambda_e' \gtrsim \frac{0.6 \text{ eV}^2}{m_{\phi}}$$

Laboratory Searches for Oscillating Variations in Fundamental Constants Induced by Scalar Dark Matter [Arvanitaki, Huang, Tilburg, PRD **91**, 015015 (2015); Stadnik, Flambaum, *PRL* **115**, 201301 (2015)]

 In the laboratory, we can search for oscillating variations in the fundamental constants induced by scalar DM, using clock frequency comparison measurements.

$$\frac{\delta\left(\omega_{1}/\omega_{2}\right)}{\omega_{1}/\omega_{2}} \propto \sum_{X} \left(K_{X,1} - K_{X,2}\right) \cos\left(\omega t\right)$$

- Exact frequency of oscillation is unknown: $\omega = m_{\varphi}$ (linear) or $\omega = 2m_{\varphi}$ (quadratic) $[10^{-22} \text{ eV} \le m_{\varphi} \le 0.1 \text{ eV} = 10^{-8} \text{ Hz} \le f \le 10^{14} \text{ Hz}]$, with $\Delta f/f \sim 10^{-6}$.
- Need to search over a broad range of frequencies.

Laboratory Searches for Oscillating Variations in Fundamental Constants Induced by Scalar Dark Matter

System	Laboratory	Constraints
^{162,164} Dy/ ¹³³ Cs	UC Berkeley	Van Tilburg, Leefer, Bougas, Budker, <i>PRL</i> 115 , 011802 (2015); Stadnik, Flambaum, <i>PRL</i> 115 , 201301 (2015) + arXiv:1605.04028
⁸⁷ Rb/ ¹³³ Cs	LNE-SYRTE Paris	Hees, Guena, Abgrall, Bize, Wolf, arXiv:1604.08514; Stadnik, Flambaum, arXiv:1605.04028

Laser Interferometry (LIGO, Virgo, GEO600, TAMA300, smaller-scale)

[Stadnik, Flambaum, PRL 114, 161301 (2015)]

Extremely sensitive *laser interferometers* can be used to search for *oscillating effects* produced by *scalar field*.

Laser Interferometry (LIGO, Virgo, GEO600, TAMA300, smaller-scale)

[Stadnik, Flambaum, PRL 114, 161301 (2015)]

<u>Laser interferometers</u> can be used to search for <u>oscillating effects</u> produced by <u>scalar field</u>.

Accumulated phase in an arm, $\Phi = \omega L/c$, changes if fundamental constants change ($L = Na_B$ and ω_{atomic} depend on the fundamental constants).

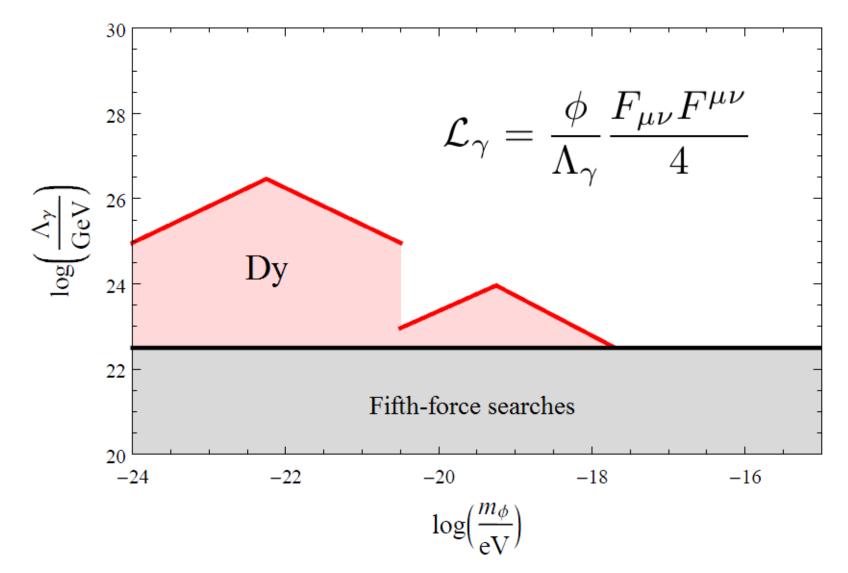
$$\Phi = \frac{\omega_{\text{electronic}}L}{c} \approx \left(\frac{e^2}{a_{\text{B}}\hbar}\right) \left(\frac{Na_{\text{B}}}{c}\right) = N\alpha$$
$$=> \frac{\delta\Phi}{\Phi} \approx \frac{\delta\alpha}{\alpha}$$

 $\Phi = 2\pi L/\lambda$, $\delta \Phi = \Phi \delta \alpha/\alpha = 10^{11} \delta \alpha/\alpha$ single passage, up to $10^{14} \delta \alpha/\alpha$ for maximal number of reflections

Laboratory Searches for Oscillating Variations in Fundamental Constants Induced by Scalar Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); arXiv:1511.00447]

- We can compare a *photon wavelength* with an *interferometer arm length*.
- Accumulated phase in an arm, $\Phi = \omega L/c$, changes if the fundamental constants change ($L \sim Na_B$ and ω_{atomic} depend on the fundamental constants).

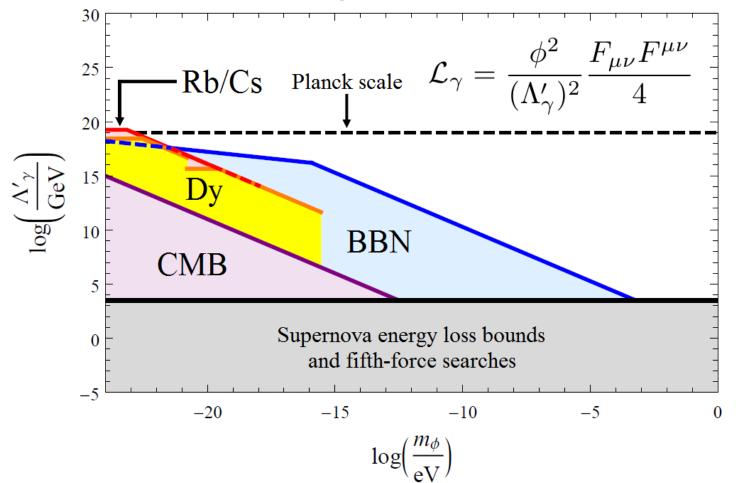
$$\Phi = \frac{\omega L}{c} \propto \left(\frac{e^2}{a_{\rm B}\hbar}\right) \left(\frac{Na_{\rm B}}{c}\right) = N\alpha \implies \frac{\delta\Phi}{\Phi} \approx \frac{\delta\alpha}{\alpha}$$


• Multiple reflections enhance observable effects due to variation of the fundamental constants by the effective mean number of passages $N_{\rm eff}$ (e.g. $N_{\rm eff} \sim 10^5$ in a strontium clock – silicon cavity interferometer).

Laboratory Searches for Oscillating Variations in Fundamental Constants Induced by Scalar Dark Matter

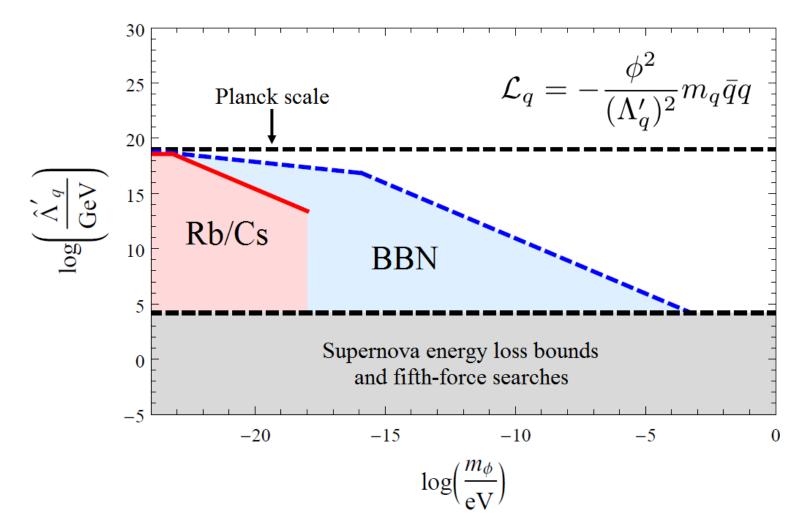
System	Λ́γ	۸´e	Λ'_{p}	Λ'_q
Atomic (Dy, optical clock)	+	-	-	-
Atomic (hyperfine)	+	+	+	+
Highly charged ionic	+	-	-	-
Molecular (hyperfine/rotational)	+	+	+	+
Molecular (fine-structure/vibrational)	+	+	+	+
Molecular (Ω-doubling/hyperfine)	+	+	+	+
Nuclear (e.g. ²²⁹ Th)	+	-	+	+
Laser interferometer, Bar	+	+	+	+

Laboratory Search for Oscillating Variations in Fundamental Constants using Atomic Dysprosium


[Van Tilburg, Leefer, Bougas, Budker, PRL 115, 011802 (2015)]

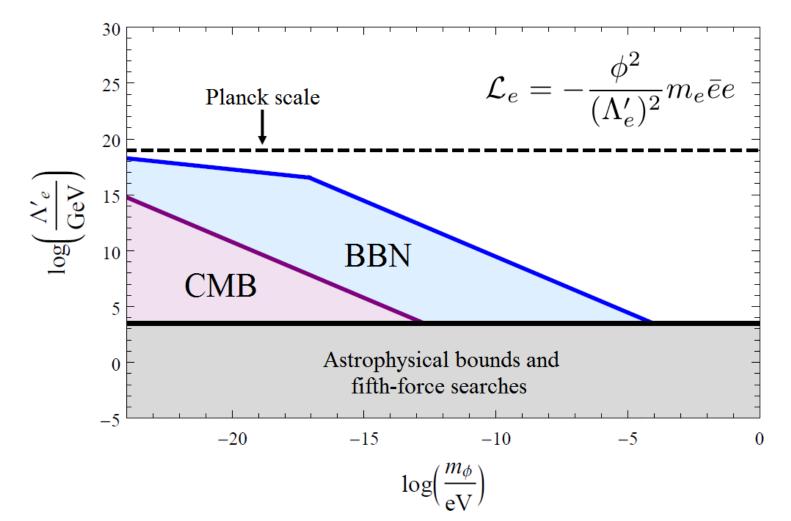
Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

BBN, CMB, Dy and Rb/Cs constraints:


[Stadnik, Flambaum, *PRL* **115**, 201301 (2015) + arXiv:1605.04028] **15 orders of magnitude improvement!**

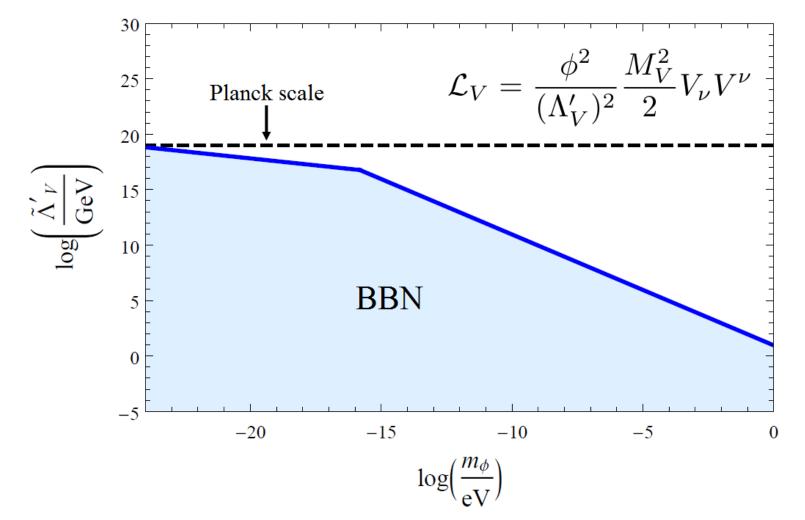
Constraints on Quadratic Interactions of Scalar Dark Matter with Light Quarks

BBN and Rb/Cs constraints:


[Stadnik, Flambaum, PRL 115, 201301 (2015) + arXiv:1605.04028]

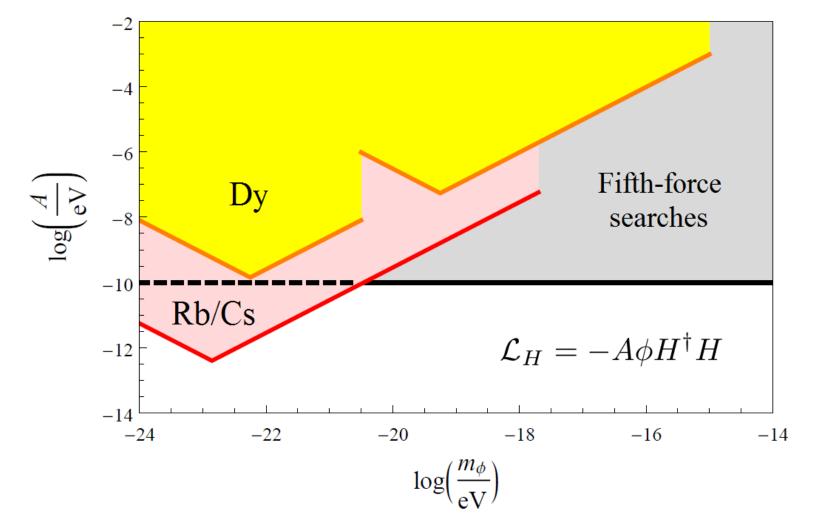
Constraints on Quadratic Interaction of Scalar Dark Matter with the Electron

BBN and CMB constraints:


[Stadnik, Flambaum, PRL 115, 201301 (2015)]

Constraints on Quadratic Interactions of Scalar Dark Matter with W and Z Bosons

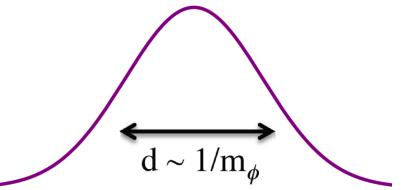
BBN constraints:


[Stadnik, Flambaum, PRL 115, 201301 (2015)]

Constraints on Linear Interaction of Scalar Dark Matter with the Higgs Boson

Dy and Rb/Cs constraints:

[Stadnik, Flambaum, arXiv:1605.04028]



Topological Defect Dark Matter

Take a simple scalar field and give it a <u>self-potential</u>, e.g. $V(\phi) = \lambda(\phi^2 - v^2)^2$. If $\phi = -v$ at $x = -\infty$ and $\phi = +v$ at $x = +\infty$, then a stable <u>domain wall</u> will form in between, e.g. $\phi = v \tanh(xm_{\phi})$ with $m_{\phi} = \lambda^{1/2} v$.

The characteristic "span" of this object is $d \sim 1/m_{\varphi}$, and it is carrying energy per area $\sim v^2/d \sim v^2 m_{\varphi}$. <u>Networks</u> of such <u>topological defects</u> can <u>give contributions to dark</u> <u>matter/dark energy</u> and <u>act as seeds for structure</u> <u>formation</u>.

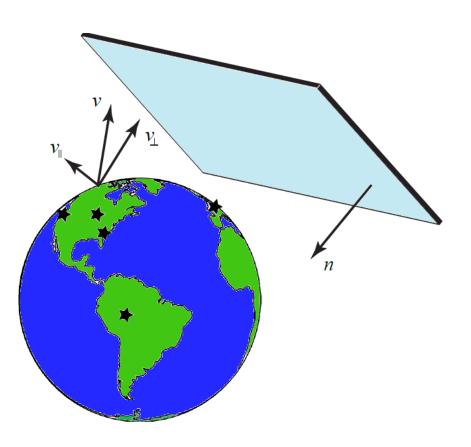
0D object – a Monopole
1D object – a String
2D object – a Domain wall

Searching for Topological Defects

Detection of topological defects via transient-in-time effects requires searching for **correlated signals** using a terrestrial or space-based **network of detectors**.

Recent proposals include:

Magnetometers [Pospelov et al., PRL 110, 021803 (2013)]


Pulsar Timing [Stadnik, Flambaum, *PRL* 113, 151301 (2014)]

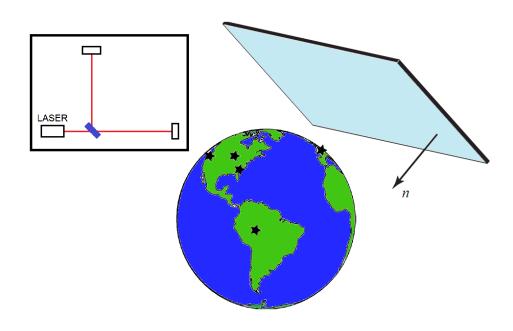
Atomic Clocks [Derevianko,

Pospelov, *Nature Physics* **10**, 933 (2014)]

Laser Interferometers

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); arXiv:1511.00447]

Global Network of Laser/Maser Interferometers (LIGO, Virgo, GEO600, TAMA300)

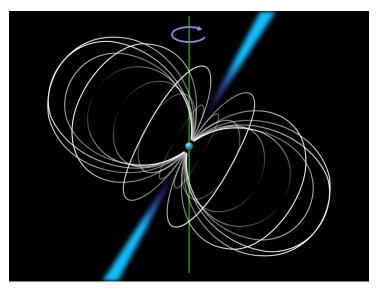

Stadnik, Flambaum, Phys. Rev.Lett. 2015 + Ongoing collaboration with LIGO and VIRGO (Klimenko, Mitselmakher)

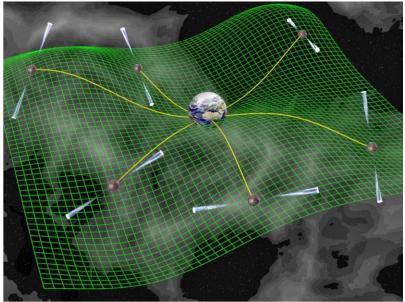
 $\overline{f}f$

$$\mathcal{L}_{\text{int}}^f = -\sum_{a} m_f \left(\frac{\phi c}{\Lambda'_f}\right)^2$$

$$\mathcal{C}_{\mathrm{int}}^{\gamma} = \left(\frac{\phi}{\Lambda_{\gamma}'}\right)^2 \frac{F_{\mu\nu}F^{\mu\nu}}{4}$$

Topological defects, which / consist of scalar particles, temporarily alter the masses of the electron, proton, neutron and photon, as well as the fine-structure constant α . This may produce a difference in the phases of *light* propagating in the two arms $(\phi = kL)$. One can search for defects through correlated signals in a global network of interferometers $(v_{\rm TD} \sim 10^{-3} c).$

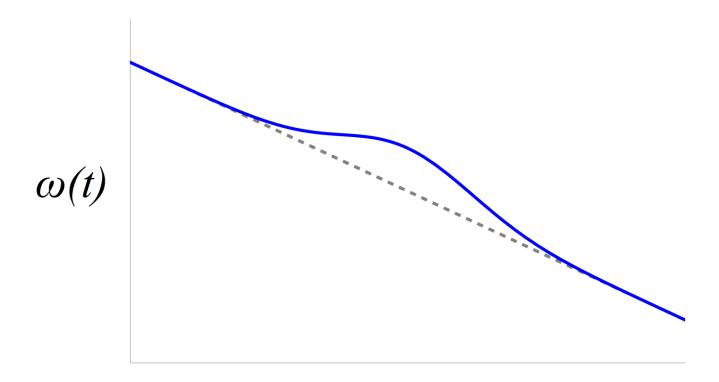



Pulsar Timing

[Stadnik, Flambaum, PRL 113, 151301 (2014)]

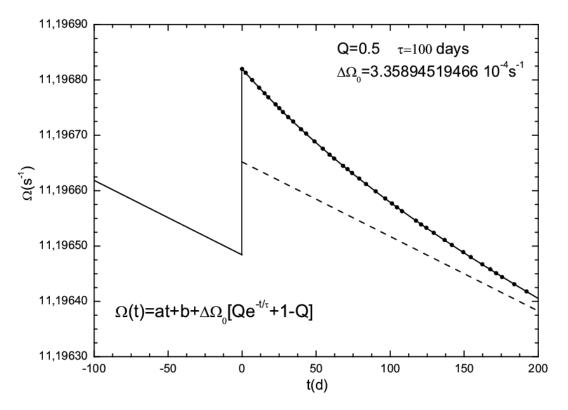
<u>Pulsars</u> are highly-magnetised, rapidly rotating neutron stars ($T_{rot} \sim 1 \text{ ms} - 10 \text{ s}$), with very high longterm period stability (~10⁻¹⁵).

A <u>network of pulsars</u> can be used to search for <u>correlated effects</u> ($v_{TD} \sim 10^{-3}c$) produced by dark matter <u>topological defects</u>.



Pulsar Timing

[Stadnik, Flambaum, PRL 113, 151301 (2014)]


Adiabatic passage of a topological defect though a pulsar produces a <u>Gaussian-shaped modulation</u> in the pulsar rotational frequency profile

Pulsar Timing

[Stadnik, Flambaum, PRL 113, 151301 (2014)]

Non-adiabatic passage of a topological defect through a pulsar may trigger a *pulsar 'glitch' event* (which have already been observed, but their underlying cause is still disputed).

Glitch Theory

- Model pulsar as 2-component system: neutron superfluid core, surrounded by neutron crust
- 2 components can rotate independently of one another
- Rotation of neutron superfluid core quantified by area density of quantised vortices (which carry angular momentum)
- Strong vortex 'pinning' to neutron crust
- Can vortices be unpinned by topological defect?
- Vortices avalanche = pulsar glitch

Low-mass Spin-0 Dark Matter

Dark Matter

Axions explain the absence of *CP* violation in the strong interaction and are a leading dark matter candidate **Pseudoscalars** (Axions, ALPs): Odd-parity

→ Oscillating spindependent effects,

P,*T*, Lorentz and Einstein symmetry violation

- Atomic magnetometry
- Ultracold neutrons
- Solid-state magnetometry

"Axion Wind" Spin-Precession Effect

[Flambaum, *Patras Workshop*, 2013], [Graham, Rajendran, *PRD* **88**, 035023 (2013)], [Stadnik, Flambaum, *PRD* **89**, 043522 (2014)]

 $B_{\rm eff}(t)$

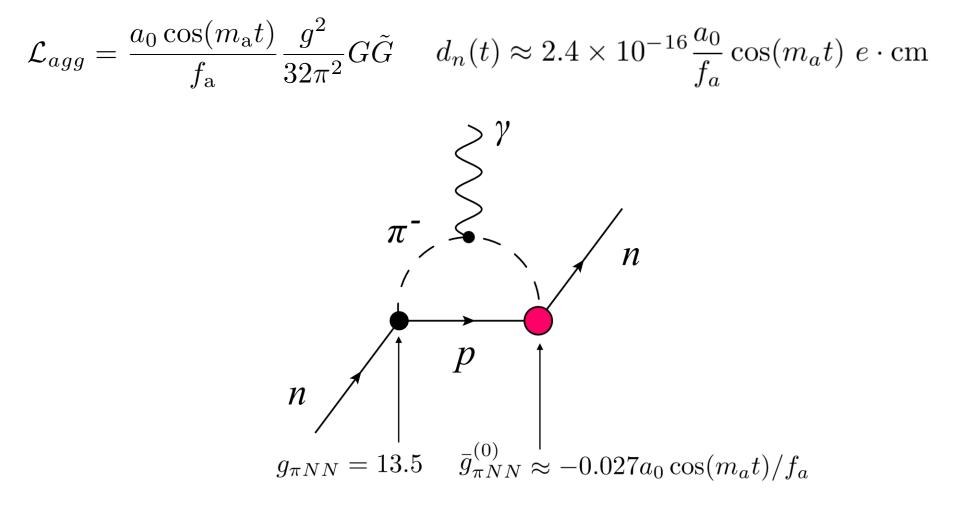
Motion of Earth through galactic axions gives rise to the interaction of fermion spins with a time-dependent *pseudo*-magnetic field $B_{eff}(t)$, producing **spin-precession effects**.

$$\mathcal{L}_{aff} = -\frac{C_f}{2f_a} \partial_i [a_0 \cos(\varepsilon_a t - p_a \cdot r)] \bar{f} \gamma^i \gamma^5$$
$$=> H_{\text{eff}}(t) \simeq \frac{C_f a_0}{2f_a} \sin(m_a t) \ p_a \cdot \sigma_f$$
$$\downarrow$$
$$B_{\text{eff}}(t)$$

Axion-Induced Oscillating Spin-Gravity Coupling

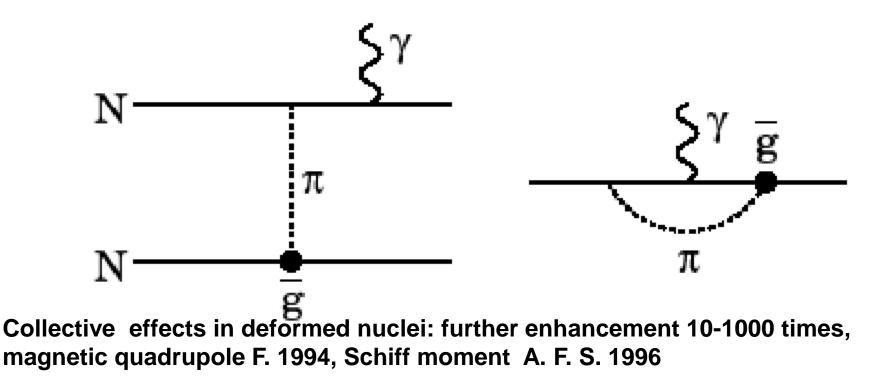
[Stadnik, Flambaum, PRD 89, 043522 (2014)]

Distortion of axion field by gravitational field of Sun or Earth induces **oscillating spin-gravity couplings**.


$$\mathcal{L}_{aff} = -\frac{C_f}{2f_a} \partial_i [a_0(r)\cos(\varepsilon_a t - p_a \cdot r)]\bar{f}\gamma^i\gamma^5 f$$

$$=> H'_{\rm eff}(t) \propto \frac{C_f a_0}{f_a} \sin(m_a t) \ \sigma_f \cdot \hat{r}$$

Spin-axion momentum and axion-induced oscillating spin-gravity couplings to nucleons may have isotopic dependence $(C_p \neq C_n)$ – calculations of proton and neutron spin contents for nuclei of experimental interest have been performed, see, e.g., [Stadnik, Flambaum, *EPJC* **75**, 110 (2015)].


Axion-Induced Oscillating Neutron EDM [Graham, Rajendran, PRD 84, 055013 (2011)]

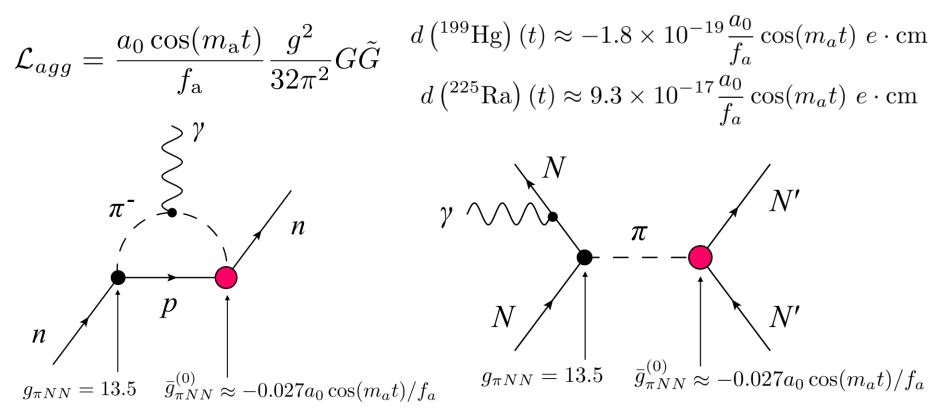
An oscillating axion field induces an **oscillating neutron electric dipole moment** via its coupling to gluons.

Nuclear EDM: *P*,*T*-odd *NN* interaction gives 40 times larger contribution than intrinsic nucleon EDM

[Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]

Atomic EDM produced by nuclear magnetic quadrupole moment MoM produced by puclear T P-odd forces

- MQM produced by nuclear T,P-odd forces (Khriplovich, Sushkov, Flambaum)
- Collective enhancement in deformed nuclei (Flambaum).T,P-odd nuclear interaction produces spin hedgehog- correlation (s r)

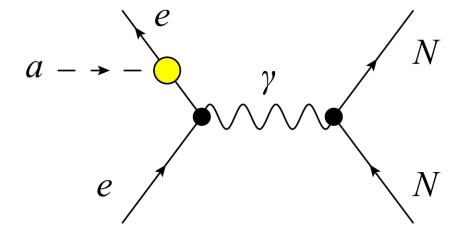

Spherical – magnetic monopole forbidden

- Deformed- collective magnetic quadrupole
- Paramagnetic molecules ThO,TaN,YbF,... (Flambaum, DeMille, Kozlov)

Axion-Induced Oscillating Atomic and Molecular EDMs

[Stadnik, Flambaum, PRD 89, 043522 (2014)]

Oscillating atomic and molecular EDMs are induced through oscillating Schiff ($J \ge 0$) and oscillating magnetic quadrupole ($J \ge 1/2$, **no Schiff screening**) moments of nuclei, which arise from *intrinsic oscillating nucleon EDMs* and *oscillating P,T-violating intranuclear forces* (larger by factor of several – 1000).



Axion-Induced Oscillating EDMs of Paramagnetic Atoms and Molecules

[Stadnik, Flambaum, *PRD* **89**, 043522 (2014)], [Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, *PRL* **113**, 081601 (2014) + *PRD* **90**, 096005 (2014)]

In *paramagnetic* atoms and molecules, **oscillating EDMs** are also induced through *mixing of opposite-parity states* via the interaction of the oscillating axion field with atomic/molecular electrons.

$$\mathcal{L}_{aee} = -\frac{C_e}{2f_a} \partial_0 [a_0 \cos(m_a t)] \bar{e} \gamma^0 \gamma^5 e \quad d_{\text{atomic}}(t) \sim -\frac{C_e a_0 m_a^2 \alpha_s}{f_a e} \cos(m_a t)$$

Relativistic effects increase ionisation by dark matter scattering on electrons by up to 3 orders of magnitude!

[Roberts, Flambaum, Gribakin, PRL 116, 023201 (2016)]

- Important for numerous existing and future dark matter detectors.
- Detailed relativistic many-body calculations in [Roberts, Dzuba, Flambaum, Pospelov, Stadnik, arXiv:1604.04559]
- DAMA collaboration claims detection of dark matter, others – no detection. Possible explanation: scattering of dark matter on electrons (instead of scattering on nuclei).
- Our calculations show tension between DAMA and XENON results.

Conclusions

- New classes of dark matter effects that are <u>linear</u> in the underlying interaction constant (traditionally-sought effects of dark matter scale as second or fourth power)
- **<u>15 orders of magnitude improvement</u>** on quadratic interactions of scalar dark matter with the photon, electron, and light quarks (*u*,*d*).
- Improved limits on linear interaction with the Higgs boson.
- First limits on linear and quadratic interactions of scalar dark matter with vector bosons (W⁺, W⁺, Z⁰)
- Oscillating effects of variation of fundamental constants and violation of the fundamental symmetries: Parity, Time reversal, Lorentz, Einstein equivalence principle
- Enormous potential for low-energy atomic experiments to search for dark matter with unprecedented sensitivity

Acknowledgements

We would like to thank the following people for helpful discussions:

Bruce Allen, Francois Bondu, Julian Berengut, Dmitry Budker, Vladimir Dzuba, Gleb Gribakin, Hartmut Grote, Nils Huntemann, Sergey Klimenko, Nathan Leefer, David Marsh, Guenakh Mitselmakher, Ekkehard Peik, Maxim Pospelov, Surjeet Rajendran, Fritz Riehle, Benjamin Roberts, Ken Van Tilburg, Yvonne Wong and Jun Ye

References (Scalar Dark Matter)

Y. V. Stadnik and V. V. Flambaum. *Can Dark Matter Induce Cosmological Evolution of the Fundamental Constants of Nature?* Physical Review Letters **115**, 201301 (2015). arXiv:1503.08540.

Y. V. Stadnik and V. V. Flambaum. Searching for Dark Matter and Variation of Fundamental Constants with Laser and Maser Interferometry. Physical Review Letters **114**, 161301 (2015). arXiv:1412.7801.

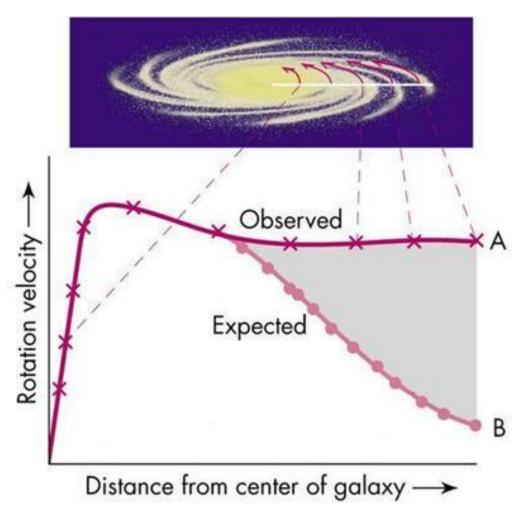
Y. V. Stadnik and V. V. Flambaum. *Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy*. arXiv:1605.04028.

Y. V. Stadnik and V. V. Flambaum. *Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark matter detection*. arXiv:1511.00447.

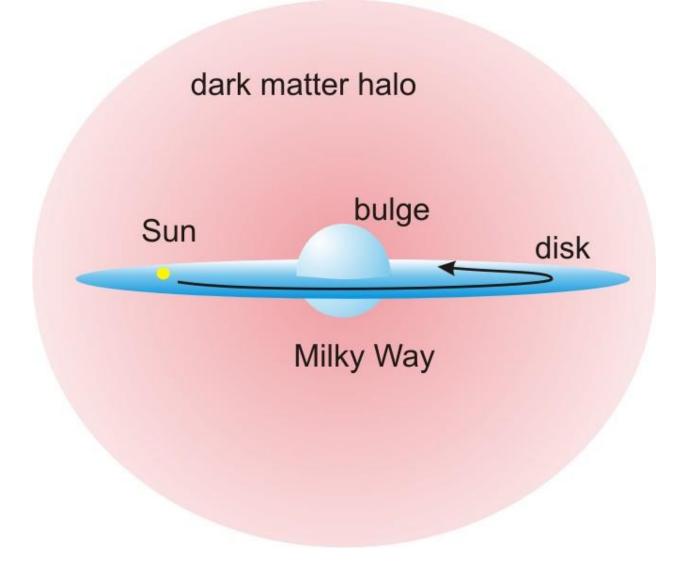
Y. V. Stadnik and V. V. Flambaum. *Searching for Topological Defect Dark Matter via Nongravitational Signatures*. Physical Review Letters **113**, 151301 (2014). arXiv:1405.5337.

References (Axion Dark Matter)

Y. V. Stadnik and V. V. Flambaum. *Axion-induced effects in atoms, molecules and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spin-gravity and spin-axion momentum couplings*. Physical Review D **89**, 043522 (2014). arXiv:1312.6667.


B. M. Roberts, Y. V. Stadnik, V. A. Dzuba, V. V. Flambaum, N. Leefer and D. Budker. *Limiting P-odd interactions of Cosmic Fields with Electrons, Protons and Neutrons*. Physical Review Letters **113**, 081601 (2014). arXiv:1404.2723.

B. M. Roberts, Y. V. Stadnik, V. A. Dzuba, V. V. Flambaum, N. Leefer and D. Budker. *Parity-violating interactions of cosmic fields with atoms, molecules and nuclei: Concepts and calculations for laboratory searches and extracting limits*. Physical Review D **90**, 096005 (2014). arXiv:1409.2564.

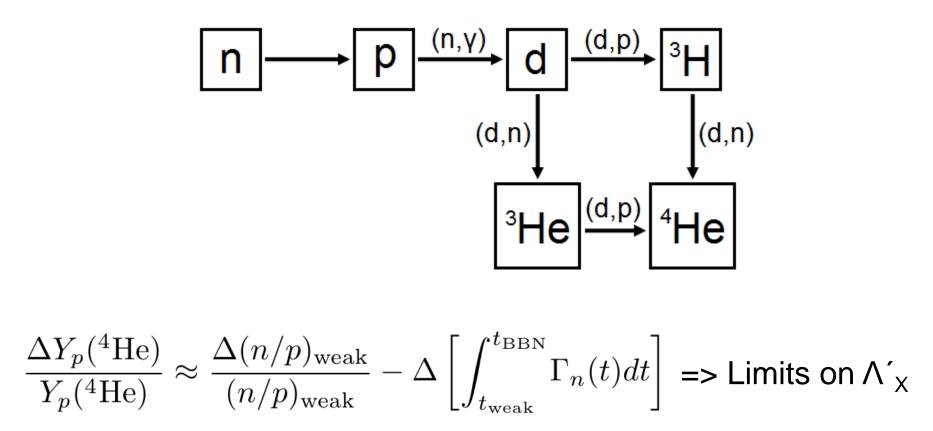

Y. V. Stadnik and V. V. Flambaum. *Nuclear spin-dependent interactions: searches for WIMP, axion and topological defect dark matter, and tests of fundamental symmetries*. European Physical Journal C **75**, 110 (2015). arXiv:1408.2184.

Motivation

Studies of galactic rotation curves (Zwicky 1930s; Rubin *et al.* 1970s)

Motivation

Astrophysical Constraints on 'Slow' Drifts in Fundamental Constants Induced by Scalar Dark Matter (BBN) [Stadnik, Flambaum, PRL 115, 201301 (2015)]


- Largest effects of scalar dark matter are in the early Universe (highest $\rho_{DM} =>$ highest ϕ_0^2).
- Earliest cosmological epoch that we can probe is Big Bang nucleosynthesis (from $t_{weak} \approx 1$ s until $t_{BBN} \approx 3$ min).
- Primordial ⁴He abundance is sensitive to relative abundance of neutrons to protons (almost all neutrons are bound in ⁴He by the end of BBN).

<u>Weak interactions</u>: freeze-out of weak interactions occurs at $t_{weak} \approx 1 \text{ s}$ ($T_{weak} \approx 0.75 \text{ MeV}$).

$$\begin{array}{l} p + e^{-} \rightleftharpoons n + \nu \\ n + e^{+} \rightleftharpoons p + \bar{\nu} \end{array} \qquad \left(\frac{n}{p}\right)_{\text{weak}} = e^{-(m_n - m_p)/T_{\text{weak}}} \end{array}$$

Astrophysical Constraints on 'Slow' Drifts in Fundamental Constants Induced by Scalar Dark Matter (BBN) [Stadnik, Flambaum, PRL 115, 201301 (2015)]

<u>BBN reactions</u>: reaction channels that produce ⁴He last until $t_{BBN} \approx 3 \text{ min} (T_{BBN} \approx 60 \text{ keV}).$

Astrophysical Constraints on 'Slow' Drifts in Fundamental Constants Induced by Scalar Dark Matter (CMB) [Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Weaker astrophysical constraints come from CMB measurements (lower ρ_{DM}).
- Variations in α and $m_{\rm e}$ at the time of electron-proton recombination affect the ionisation fraction and Thomson scattering cross section, $\sigma_{\rm Thomson} = 8\pi\alpha^2/3m_{\rm e}^2$, changing the mean-free-path length of photons at recombination and leaving distinct signatures in the CMB angular power spectrum.

$$\Lambda_{\gamma}' \gtrsim \frac{1 \text{ eV}^2}{m_{\phi}}, \ \Lambda_e' \gtrsim \frac{0.6 \text{ eV}^2}{m_{\phi}}$$

Axion-Induced Oscillating Spin-Gravity Coupling

[Stadnik, Flambaum, PRD 89, 043522 (2014)]

Distortion of axion field by gravitational field of Sun or Earth induces **oscillating spin-gravity couplings**.

$$\mathcal{L}_{aff} = -\frac{C_f}{2f_a} \partial_i [a_0(r)\cos(\varepsilon_a t - p_a \cdot r)]\bar{f}\gamma^i\gamma^5 f$$

$$=> H'_{\rm eff}(t) \propto \frac{C_f a_0}{f_a} \sin(m_a t) \ \sigma_f \cdot \hat{r}$$

Spin-axion momentum and axion-induced oscillating spin-gravity couplings to nucleons may have isotopic dependence $(C_p \neq C_n)$ – calculations of proton and neutron spin contents for nuclei of experimental interest have been performed, see, e.g., [Stadnik, Flambaum, *EPJC* **75**, 110 (2015)].

Axion-Induced Oscillating Parity Nonconservation in Atoms and Molecules

[Stadnik, Flambaum, *PRD* **89**, 043522 (2014)], [Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, *PRL* **113**, 081601 (2014) + *PRD* **90**, 096005 (2014)]

Interaction of the oscillating axion field with atomic/molecular electrons mixes opposite-parity states, producing **oscillating PNC effects in atoms and molecules**.

$$\mathcal{L}_{aee} = -\frac{C_e}{2f_a} \partial_0 [a_0 \cos(m_a t)] \bar{e} \gamma^0 \gamma^5 e \quad E_{\text{PNC}}(t) = -\frac{C_e a_0 m_a}{2f_a} \sin(m_a t) K_{\text{PNC}}$$

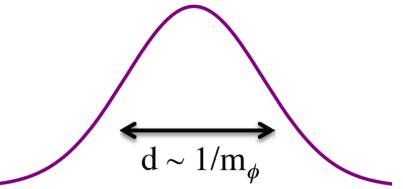
Axion-induced oscillating atomic PNC effects are determined entirely by relativistic corrections (in the non-relativistic approximation, $K_{PNC} = 0$)*.

* Compare with the Standard Model *static* atomic PNC effects in atoms, which are dominated by Z^0 -boson exchange between atomic electrons and nucleons in the nucleus, where the effects arise already in the non-relativistic approximation.

Axion-Induced Oscillating Nuclear Anapole Moments

[Stadnik, Flambaum, *PRD* **89**, 043522 (2014)], [Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, *PRL* **113**, 081601 (2014) + *PRD* **90**, 096005 (2014)]

Interaction of the oscillating axion field with nucleons in nuclei induces **oscillating nuclear anapole moments**.


$$\mathcal{L}_{aNN} = -\frac{C_N}{2f_a} \partial_0 [a_0 \cos(m_a t)] \bar{N} \gamma^0 \gamma^5 N$$
$$\mathbf{a}(t) = -\frac{C_N a_0 m_a}{f_a} \frac{\pi e \mu}{m} \frac{K \mathbf{I}}{I(I+1)} \langle r^2 \rangle \sin(m_a t)$$

Topological Defect Dark Matter

Take a simple scalar field and give it a *self-potential*, e.g. $V(\phi) = \lambda(\phi^2 - v^2)^2$. If $\phi = -v$ at $x = -\infty$ and $\phi = +v$ at $x = +\infty$, then a stable **domain wall** will form in between, e.g. $\phi(x) = v \tanh(xm_{\phi})$ with $m_{\phi} = \lambda^{1/2} v$.

The characteristic "span" of this object is $d \sim 1/m_{\varphi}$, and it is carrying energy per area $\sim v^2/d \sim v^2 m_{\varphi}$. Networks of such topological defects can give contributions to dark matter/dark energy and act as seeds for structure formation.

0D object – a Monopole
1D object – a String
2D object – a Domain wall

Topological Defect Dark Matter

Topological defects may have *large amplitude*, *large transverse size* (possibly macroscopic) and *large distances* (possibly astronomical) between them.

=> Signatures of topological defects are very different from other forms of dark matter!

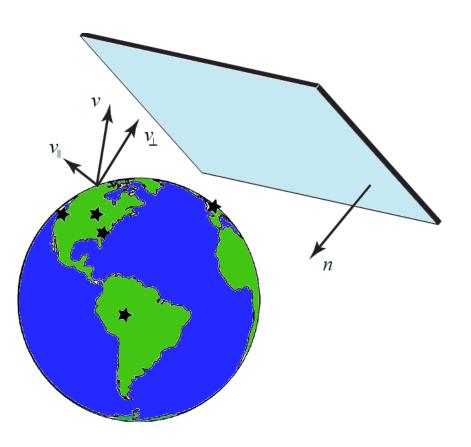
Topological defects produce transient-in-time effects.

Searching for Topological Defects

Detection of topological defects via transient-in-time effects requires searching for **correlated signals** using a terrestrial or space-based **network of detectors**.

Recent proposals include:

Magnetometers [Pospelov et al., PRL 110, 021803 (2013)]


Pulsar Timing [Stadnik, Flambaum, *PRL* 113, 151301 (2014)]

Atomic Clocks [Derevianko,

Pospelov, *Nature Physics* **10**, 933 (2014)]

Laser Interferometers

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); arXiv:1511.00447]

