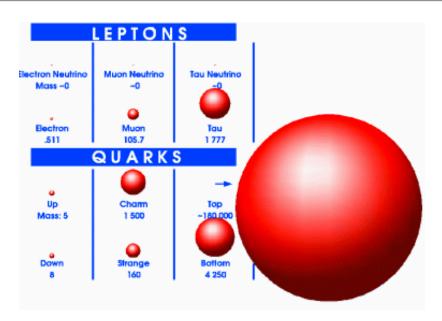
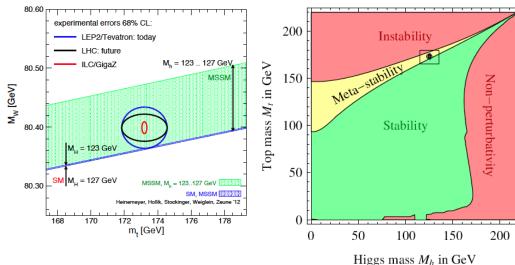
What Top Mass is Measured at the LHC?

André H. Hoang

University of Vienna

Why the top quark is not just heavy





- Top quark: heaviest known particle
- Most sensitive to the mechanism of mass generation
- Peculiar role in the generation of flavor
- Top might not be the SM-Top, but have a non-SM component.
- Top as calibration tool for new physics particles (SUSY and other exotics)
- Top production major background it new physics searches
- One of crucial motivations for SUSY
- Excellent ground for high-precision studies of QCD and electroweak physics

Outline

- Introduction
- Monte Carlo generators and the top quark mass
- Calibration of the Monte Carlo top mass parameter
- Theory for boosted top quarks factorization
- Preliminary detailed results of first serious systematic analysis
- Summary, future plans

In collaboration with:

M. Butenschön

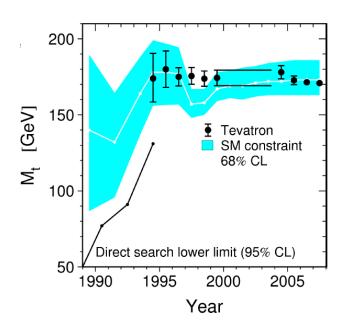
B. Dehnadi,

V. Mateu,

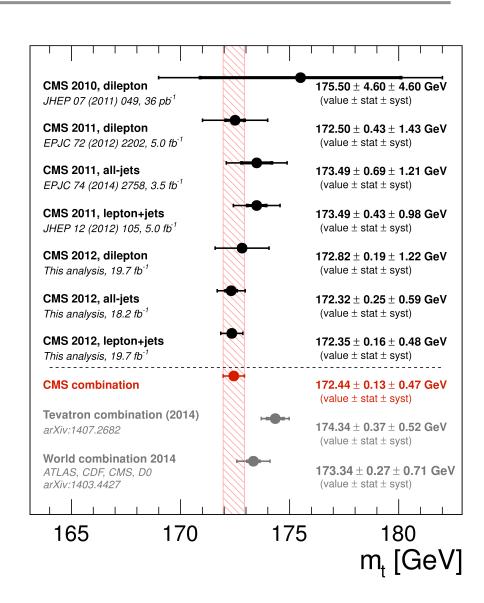
M. Preisser

I. Stewart

A small history on top mass reconstruction



- Many individual measurements with uncertainty below 1 GeV.
- Some discrepancies between LHC and Tevatron
- Reached uncertainties < 0.5 MeV.
- Alternative method with uncertainties
 > 1.5 GeV.

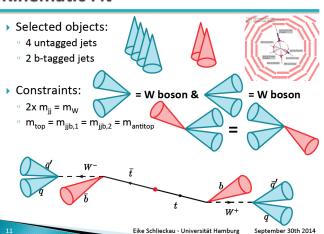


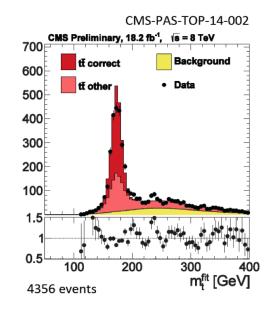
Main Top Mass Measurements Methods

LHC+Tevatron

Direct Reconstruction:

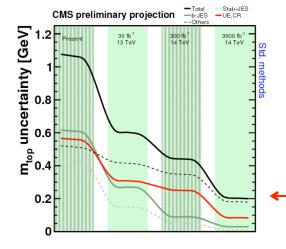
Kinematic Fit





Determination of the best-fit value of the Monte-Carlo top quark mass parameter

kinematic mass determination

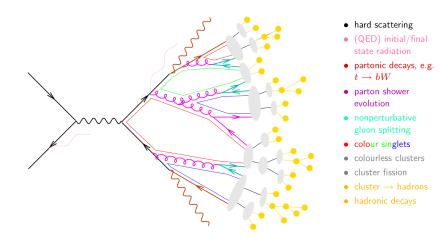


- High top mass sensitivity
- Precision of MC ?
- → Meaning of m_t^{MC} ?

Δ m_t ~ 0.5 GeV

 $\Delta m_t \sim 200 \text{ MeV (projection)}$

Monte-Carlo Event Generators



- Full simulation of all processes (all experimental aspects accessible)
- QCD-inspired: partly first principles QCD ⇔ partly model (observable-dependent)
- Description power of data better than intrinsic theory accuracy.
- Top quark: treated like a real particle (m_t^{MC} ≈ m_t^{pole} +?).

But pole mass ambiguous by O(1 GeV) due to confinement. Better mass definition needed.

Uncertainty (a): But how precise is modelling? → Part of exp. Analyses Unvertainty (b): What is the meaning of MC QCD parameters? →

Depends strictly speaking on the observable, because of model character of MCs! Must be adressed for each type of observable (until we have better MCs).

MC Top Quark Mass

AHH, Stewart 2008 AHH, 2014

$$m_t^{\text{MC}} = m_t^{\text{MSR}}(R = 1 \text{ GeV}) + \Delta_{t,\text{MC}}(R = 1 \text{ GeV})$$

$$\Delta_{t, MC}(1 \text{ GeV}) \sim \mathcal{O}(1 \text{ GeV})$$

- small size of $\Delta_{t,MC}$
- Renormalon-free
- little parametric dependence on other parameters

MSR Mass Definition

 $\underline{\mathsf{MS Scheme:}} \qquad (\mu > \overline{m}(\overline{m}))$

$$\overline{m}(\overline{m}) - m^{\text{pole}} = -\overline{m}(\overline{m}) \left[0.42441 \,\alpha_s(\overline{m}) + 0.8345 \,\alpha_s^2(\overline{m}) + 2.368 \,\alpha_s^3(\overline{m}) + \ldots \right]$$

 $\underline{\mathsf{MSR Scheme:}} \qquad (R < \overline{m}(\overline{m}))$

$$m_{\text{MSR}}(R) - m^{\text{pole}} = -R \left[0.42441 \,\alpha_s(R) + 0.8345 \,\alpha_s^2(R) + 2.368 \,\alpha_s^3(R) + \ldots \right]$$

$$m_{\mathrm{MSR}}(m_{\mathrm{MSR}}) = \overline{m}(\overline{m})$$

 $\Longrightarrow m_{ ext{MSR}}(R)$ Short-distance mass that smoothly interpolates all R scales

Calibration of the MC Top Mass

Method:

- √ 1) Strongly mass-sensitive hadron level observable (as closely as possible related to reconstructed invariant mass distribution!)
- ✓ 2) Accurate analytic <u>hadron level QCD</u> predictions at ≥ NLL/NLO with full control over the quark mass scheme dependence.
- ✓ 3) QCD masses as function of m_t^{MC} from fits of observable.
 - 4) Cross check observable independence

$$m_t^{\text{MC}} = m_t^{\text{MSR}}(R = 1 \text{ GeV}) + \Delta_{t,\text{MC}}(R = 1 \text{ GeV})$$

$$\Delta_{t,\mathrm{MC}}(1 \mathrm{~GeV}) = \bar{\Delta} + \delta \Delta_{\mathrm{MC}} + \delta \Delta_{\mathrm{pQCD}} + \delta \Delta_{\mathrm{param}}$$

Experimental systematics

Monte Carlo errors:

- different tunings
- parton showers
- color reconnection
- Intrinsic error, ...

QCD errors:

- perturbative error scale uncertainties
 - electroweak effects

Parametric errors:

- strong coupling α_s
- Non-perturbative parameters

Treated in our analysis

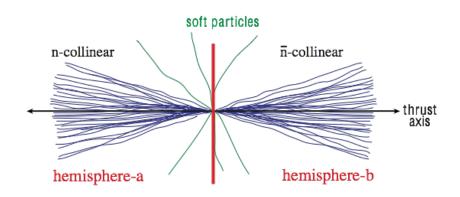
Thrust Distribution

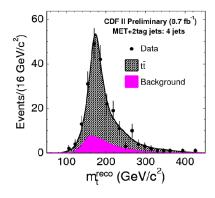
Observable: 2-jettiness in e+e- for $Q \sim p_T \gg m_t$ (boosted tops)

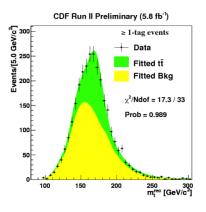
$$\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{Q}$$

$$\tau \stackrel{0}{\approx} \frac{M_1^2 + M_2^2}{Q^2}$$

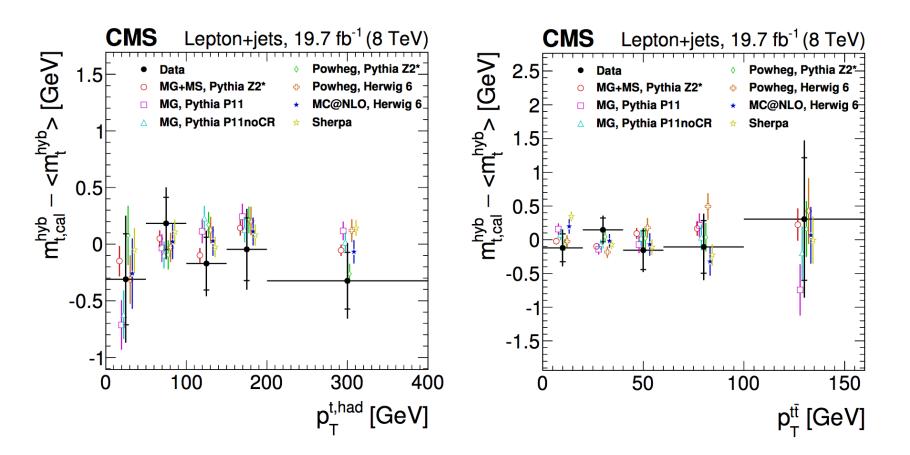
Invariant mass distribution in the resonance region of wide hemisphere jets!







Boosted Top Mass Measurements at CMS

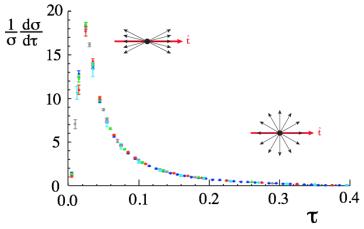


- Top mass from reconstruction of boosted tops consistent with low p_T results.
- More precise studies possible with more statistics from Run2.

<m^{hyb}> [GeV]

Factorization for Event Shapes

$$rac{\mathrm{d}\sigma}{\mathrm{d} au} = \mathit{Q}^2\sigma_0\mathit{H}_0(\mathit{Q},\mu)\int \mathit{d}\ell \; \mathit{J}_0(\mathit{Q}\ell,\mu)\, \mathit{S}_0\left(\mathit{Q} au-\ell,\mu
ight)$$



Massless quarks:

Korshemski, Sterman 1995-2000 Bauer, Fleming, Lee, Sterman (2008)

Becher, Schwartz (2008)

Abbate, AHH, Fickinger, Mateu, Stewart 2010

Extension to massive quarks:

- VFNS for final state jets (with massive quarks): log summation incl. mass
- Boostet fat top jets

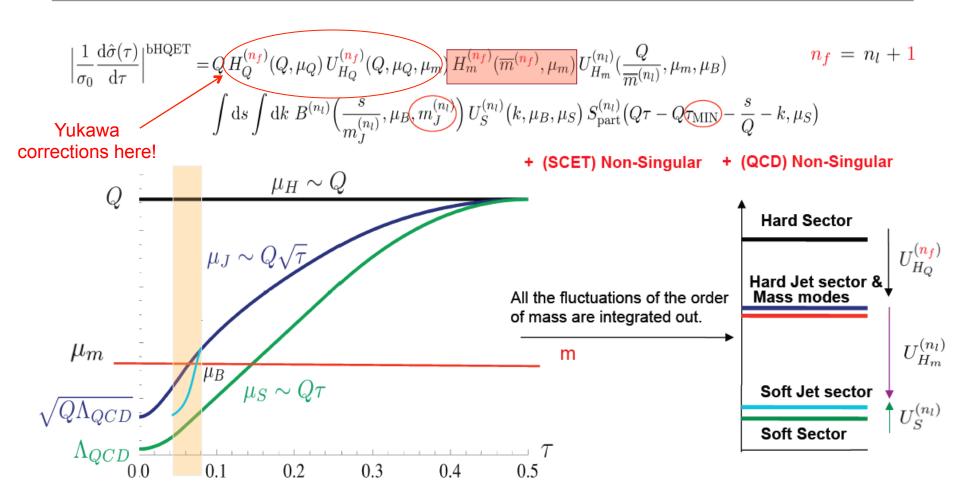
Fleming, AHH, Mantry, Stewart 2007

Gritschacher, AHH, Jemos, Mateu Pietrulewicz 2013-2014

Butenschön, Dehnadi, AHH, Mateu 2016 (to appear soon)

→ NNLL + NLO + non-singular + hadronization + renormalon-subtraction

b(oosted)HQET Factorization



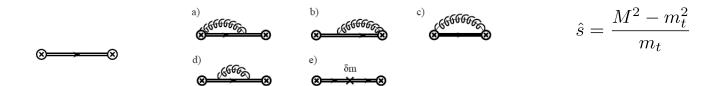
Matching coefficient of SCET and bHQET have a large log from secondary corrections.

b(oosted)HQET Factorization

Jet function:
$$B_{+}(2v_{+}\cdot k) = \frac{-1}{8\pi N_{c}m} \operatorname{Disc} \int d^{4}x \, e^{ik\cdot x} \left\langle 0 \left| \operatorname{T}\left\{ \bar{h}_{v_{+}}(0) W_{n}(0) W_{n}^{\dagger}(x) h_{v_{+}}(x) \right\} \right| 0 \right\rangle$$

- perturbative, <u>any mass scheme</u>
- depends on m_t, Γ_t
- Breit-Wigner at tree level
- Gauge-invariant off-shell top quark dynamics

$$W = \sum_{m=0}^{\infty} \sum_{\text{perms}} \frac{(-g)^m}{m!} \frac{\bar{n} \cdot A_{n,q_1}^{a_1} \cdots \bar{n} \cdot A_{n,q_m}^{a_m}}{\bar{n} \cdot q_1 \, \bar{n} \cdot (q_1 + q_2) \cdots \bar{n} \cdot (\sum_{i=1}^m q_i)} T^{a_m} \cdots T^{a_1}$$

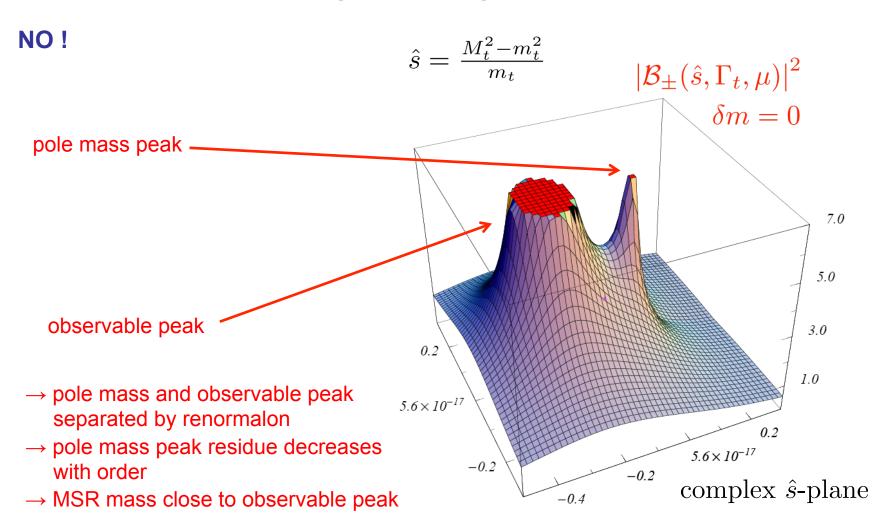


$$\mathcal{B}_{\pm}(\hat{s},0,\mu,\delta m) = -\frac{1}{\pi m} \frac{1}{\hat{s}+i0} \left\{ 1 + \frac{\alpha_s C_F}{4\pi} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 + \frac{5\pi^2}{6} \right] \right\} \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 + \frac{5\pi^2}{6} \right] \right\} \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 + \frac{5\pi^2}{6} \right] \right\} \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}+i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}-i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}-i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}-i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}-i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right] \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s}-i0)^2} \left[4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) + 4 \ln^2 \left(\frac{\mu}{-\hat{s}-i0} \right) \right]$$

Fleming, AHH, Mantry, Stewart 2007

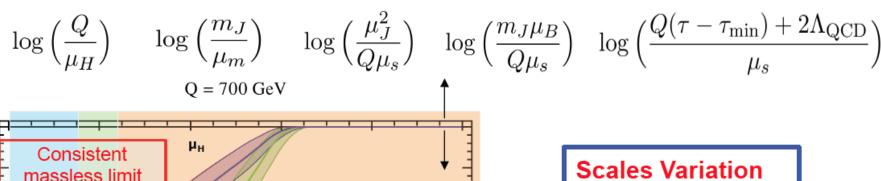
b(oosted)HQET Factorization

Is the pole mass determining the top single particle pole?



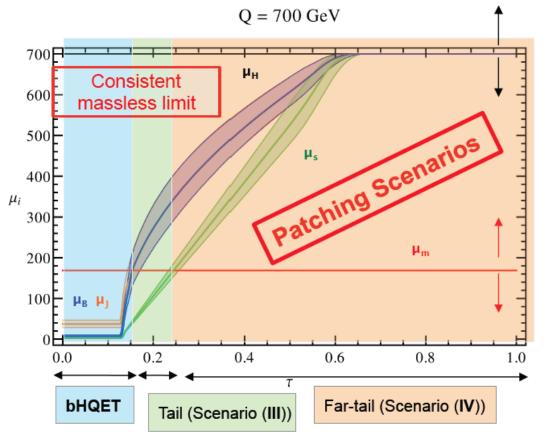
Profile Functions

Profile functions should sum up large logarithms and achieve smooth transition between the peak, tail and far-tail.



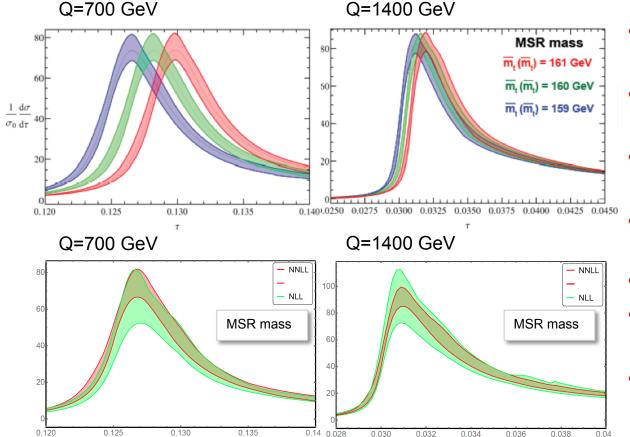
- ✓ Generalized to arbitrary mass values
- Compatible with massless profiles

Proper scale variations are essential in reliable estimation of missing higher order terms.



2-Jettiness for Top Production (QCD)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau_2} = f(m_t^{\mathrm{MSR}}(R), \alpha_s(M_Z), \Omega_1, \Omega_2, \dots, \mu_h, \mu_j, \mu_s, \mu_m, R, \Gamma_t)$$
 any scheme possible Non-perturbative renorm. scales finite lifetime



- Higher mass sensitivity for lower Q (p_T)
- Finite lifetime effects included
- Dependence on nonperturbative parameters
- Convergence: Ω_{1,2,...}
- Good convergence
- Reduction of scale uncertainty (NLL to NNLL)
- Control over whole distribution

Fit Procedure Details

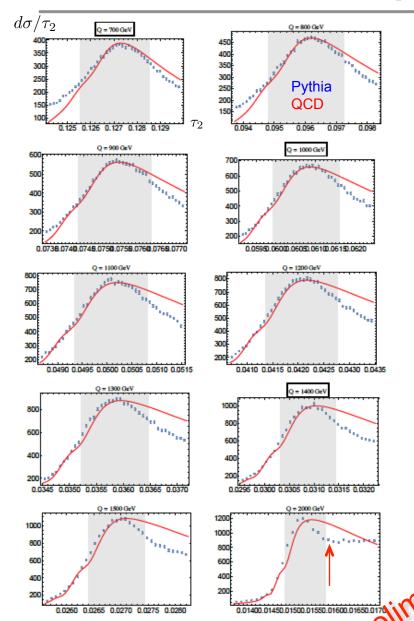
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau_2} = f(m_t^{\mathrm{MSR}}(R), \alpha_s(M_Z), \Omega_1, \Omega_2, \dots, \mu_h, \mu_j, \mu_s, \mu_m, R, \Gamma_t)$$
 any scheme possible Non-perturbative renorm. scales finite lifetime

QCD parameters measured from Pythia

- Fit parameters: $m_t^{ ext{MSR}}(R),\, lpha_s(M_Z),\, \Omega_1,\, \Omega_2,\, \ldots,$
- Perturbative error: fits for 500 randomly picked sets of renor. scales
- Tunings: 1 ("very old"), 3 ("LEP"), 7 ("Monash")
- Top quark width: $\Gamma_t = \text{dynamical (default)}, 0.7, 1.4, 2.0 \,\text{GeV}$
- External smearing (Detector effects): $\Omega_{1,\mathrm{smear}}=0,\,0.5,\,\ldots,\,3.0,\,3.5,\,\mathrm{GeV}$ (just for cross checks)
- Pythia masses: $m_t^{\text{Pythia}} = 170, \ldots, 175 \, \text{GeV}$
- Strong coupling: $\alpha_s(M_Z) = 0.114, 0.116, 0.118, 0.120, 0.122$
- Fit possible for any order / mass scheme (so far NLL+NNLL / MSR)

Number of fits entering the first analysis: 2.8 10⁶

Peak Fits



Default renormalization scales; Γ_t =1.4 GeV, tune 3, $\Omega_{1,smear}$ =0 GeV, m_t^{Pythia} =170 GeV, Q={700, 1000, 1400} GeV, peak fit (60/80)%, normalized to fit range

- Good agreement of Pythia 8.2 with NNLL+NLO QCD description
- Pythia statistics: 10⁶ events
- Discrepancies in distribution tail and for higher energies (Pythia is less reliable where fixed-order results valid, well reliable in softcollinear limit)
- Pythia kink issue ?
- Excellent sensitivity to the top quark mass.

• Tree-Level:
$$au_2^{
m peak} = 1 - \sqrt{1 - rac{4m_t^2}{Q^2}}$$

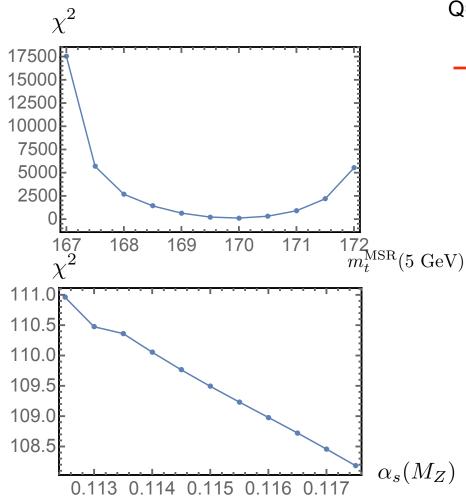
tune = 3

$$m_{MC}$$
 = 170.
 Γ_t = -1. GeV
 α = 0.118
 m^{SR} (5 GeV) = 169.138 ± 0.099
 $\frac{\chi^2}{dof}$ = 35.36

 Ω_1 = 0.434 ± 0.060 GeV Ω_2 = 0.473 ± 0.060 GeV Ω_3 = -0.158 ± 0.300 GeV

 $\Omega_4 = -2.226 \pm 1.000 \text{ GeV}$

Peak Fits

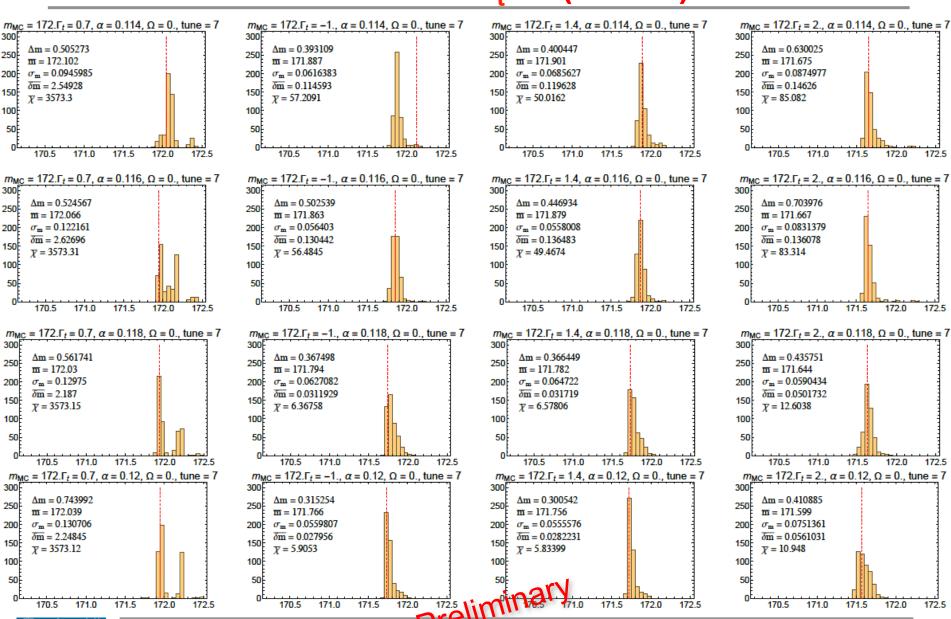


Default renormalization scales; Γ_t =1.4 GeV, tune 7, $\Omega_{1,smear}$ =2.5 GeV, m_t^{Pythia} =171 GeV, Q={700, 1000, 1400} GeV, peak fit (60/80)%

$$\rightarrow$$
 $\chi^2_{\text{min}} \sim O(100)$

- Very strong sensitivity to m_t
- Low sensitivity to strong coupling
- Take strong coupling as input
- χ^2_{min} and δm_t^{stat} do not have any physical meaning
- We use rescaled χ²/dof (PDG prescription) to define "intrinsic MC compatibility uncertainty"

Peak Fits: m_t^{MSR}(1 GeV)



universität wien

Humboldt Kolleg on Particle Physics, Kitzbühel, June 26 - July 2, 2016

Order Behavior: MSR vs. Pole Mass

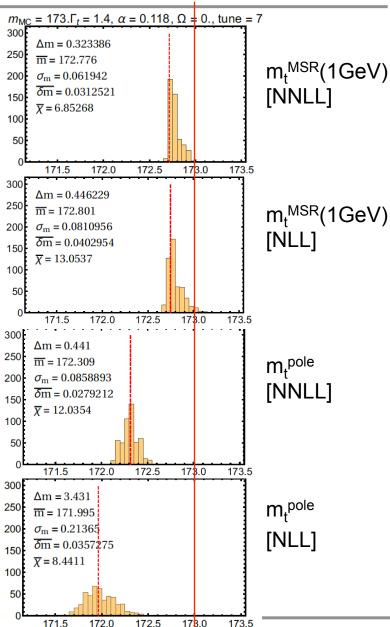
$$m_{MC}$$
=173 GeV

Γ₊=1.4 GeV

Preliminary

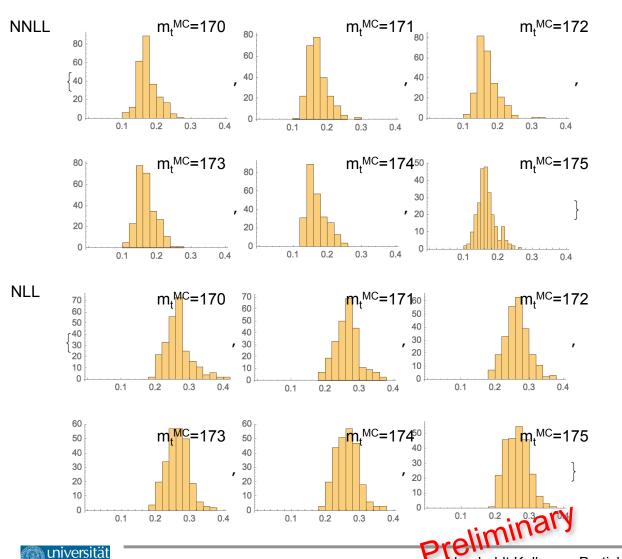
- Very good stability for MSR mass
- Mass m_t^{MSR}(1GeV) mass definition closest to the MC mass.
- Pole mass shows much worse convergence.
- Poles mass not close numerically to the MC mass: numbers are observable dependent and great care has to be taken to use the results as input in other calculations.
- Current world average:

$$m_{MC} = 172.44 \pm 0.49 \text{ GeV}$$



Peak Fits: m_tMSR(1 GeV)

Distribution of covervage range /2: each from scan over 500 profile functions



- Renormalization scale error
- NNLL: 150-170 MeV
- NLL: 250-300 MeV
- Good convergence!

Histograms include $\alpha_{\rm S}({\rm M}_{\rm Z})$ =0.114 - 0.122 and Γ_t =-1,1.4, and tunes 1,3,7; 7 Q sets, 2 bin fit ranges (252 combinations)

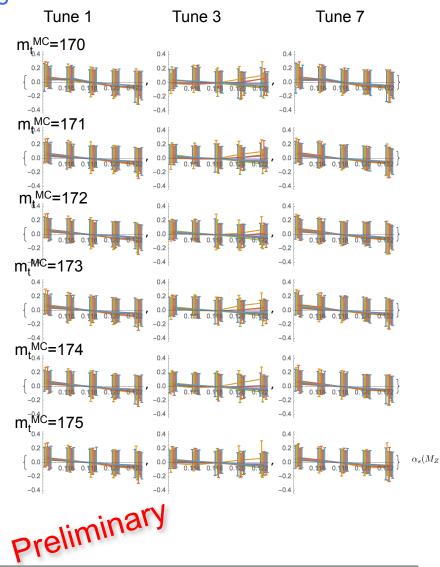
Peak Fits: m_tMSR(1 GeV)

Parametric dependence on strong coupling

$$m_t^{MSR}[\alpha_s(M_Z)] - m_t^{MSR}[0.118]$$

Small sensitivity of m_t^{MSR}(1GeV) on α_s(M_z). [~50 MeV error]

 Error bars: envelope of best mass value distribution in 500 profile function fits

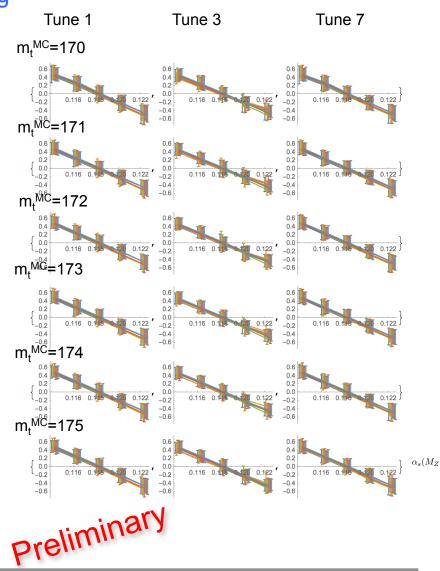


Peak Fits: m_t^{MSR}(1 GeV)

Parametric dependence on strong coupling

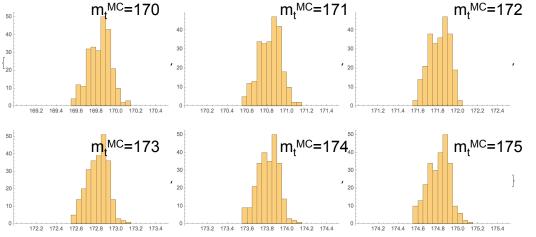
$$m_t(m_t)[\alpha_s(M_Z)] - m_t(m_t)[0.118]$$

- Large sensitivity of MSbar mass on α_s(M_z). [not an error, but calculated from MSR mass]
- The MC top mass IS FAR AWAY from the MSbar mass.
 - Error bars: envelope of best mass value distribution in 500 profile function fits



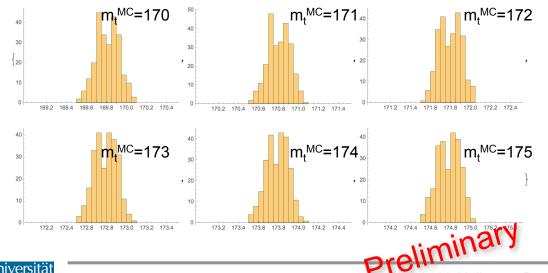
Peak Fits: m_t^{MSR}(1 GeV)

Intrinsic MC Compatibility Error (distribution of mean values)



- Coverage is measure for intrinsic MC uncertainty
- NNLL: ~200 MeV
- NLL: ~ 200 MeV
- Probably never before accounted in reconstruction analyses
- Measure for ultimate precision (MC dependent!)

NLL



• Histograms include $\alpha_S(M_Z)$ =0.114 – 0.122 and Γ_t =-1,1.4, and tunes 1,3,7; 7 Q sets, 2 bin fit ranges

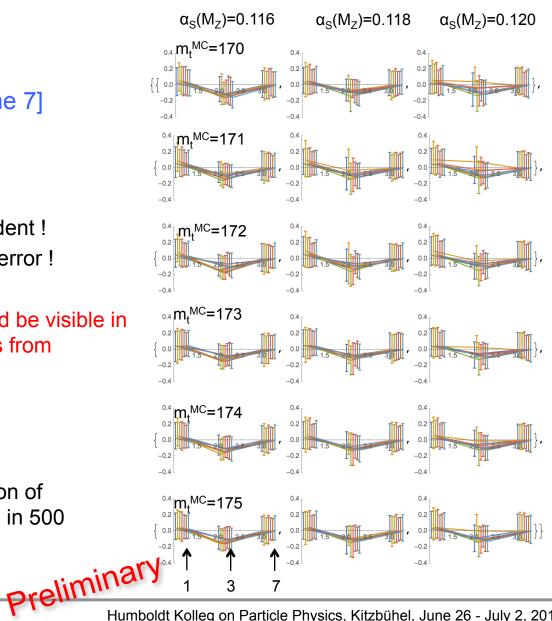
(252 combinations)

Peak Fits: m₊MSR(1 GeV)

Tune dependence

$$m_t^{MSR}[tune] - m_t^{MSR}[tune 7]$$

- Clear sensitivity to tune.
- MC top mass is tune-dependent!
- Tune-dependence is not an error!
- Opposite dependence should be visible in MC top mass determinations from experimental data.
 - (highly nontrivial validation)
 - Top widths: Γ_t =-1,1.4
 - Error bars: standard deviation of best mass value distribution in 500 profile function fits



Summary

- First serious precise MC top quark mass calibration based on e⁺e⁻ 2-jettiness (large p_T): closely related to observables dominating the reconstruction method
- NNLL+NLO QCD calculations based on an extension of the SCET approach concerning massive quark effects (all large logs incl. Ln(m)'s summed systematically).
- The Monte Carlo top mass calibration in terms of m_t^{MSR}(1GeV):

Scale dependence (NNLL): ~ 170 MeV

• α_s dependence ($\delta\alpha_s = 0.002$): ~ 50 MeV

■ Intrinsic MC error: ~ 200 MeV

Preliminary !!!

MC top mass is tune-dependent and MC dependent!
 Using MC top mass calibration might eliminate these error sources from the experimental analyses.

Confirmation of the dependence predicted by calibration provides highly non-trivial cross check concerning the universality of the calibration.

Outlook & Plans

- Full verified error analysis @ NNLL/NLO → publication
 - Different sets of Q (p_T) values
 - Different fit ranges
 - Bug fixes
- Calibration Package for public use
 - Calibration m_t^{MC} → m_t^{MSR}(1GeV)
 - Code m_t^{MSR}(1GeV) → any other scheme
- Heavy jet mass, C-parameter (NNLL),
- pp-2-jettiness analysis (NLL) w.i.p.
- NNNLL+NNLO (2-jettiness for e⁺e⁻) w.i.p.
- Mass (+ Yukawa coupling) conversions w. QCD + electroweak (Yukawa effects)

Backup Slides

Pole Mass from MSR Mass

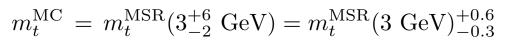
$$\alpha_s(M_Z) = 0.118$$

$$n_f = 5$$

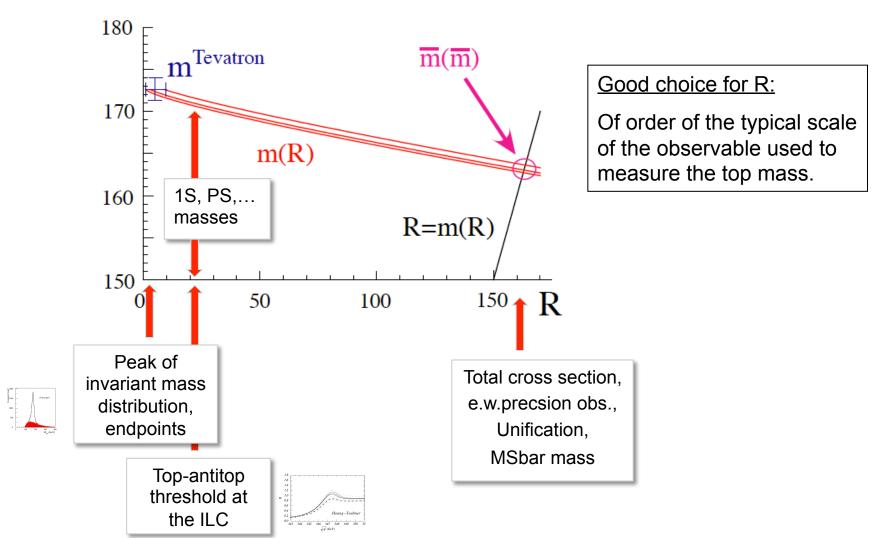
$$\begin{split} m_t^{\text{pole}} - m_t^{\text{MSR}} (1\,\text{GeV}) &= 0.173 + 0.138 + 0.159 + 0.23\,\,\text{GeV} &\longleftarrow \text{calculated} \\ &+ 0.53 + 1.43 + 4.54 + 16.6\,\,\text{GeV} &\longleftarrow \text{extrapolated} \\ &+ 68.6 + 317.7 + 1629 + 9158\,\,\text{GeV} \end{split}$$

- Size of terms consistent with scale error estimate of calibration.
- No stable determination of pole mass.

MSR Mass Definition



AH, Stewart: arXive:0808.0222



Masses Loop-Theorists Like to use

Total cross section (LHC/Tev): •

$$m_t^{\text{MSR}}(R=m_t) = \overline{m}_t(\overline{m}_t)$$

- · more inclusive
- sensitive to top production mechanism (pdf, hard scale)
- indirect top mass sensitivity
- large scale radiative corrections

$$M_t = M_t^{(O)} + M_t(0)\alpha_s + \dots$$

Threshold cross section (ILC):

$$m_t^{\rm MSR}(R\sim 20~{\rm GeV})\,,~m_t^{\rm 1S}\,,~m_t^{\rm PS}(R)$$

$$M_t = M_t^{(O)} + \langle p_{\text{Bohr}} \rangle \alpha_s + \dots$$

$$\langle p_{\rm Bohr} \rangle = 20 \, {\rm GeV}$$

related to different computational methods

Mass schemes

Relations computable in perturbation theory

Inv. mass reconstruction (ILC/LHC):

$$m_t^{\text{MSR}}(R \sim \Gamma_t), \ m_t^{\text{jet}}(R)$$

$$M_t = M_t^{(O)} + \Gamma_t \alpha_s + \dots$$

$$\Gamma_t = 1.3 \, \mathrm{GeV}$$

- more exclusive
- sensitive to top final state interactions (low scale)
- direct top mass sensitivity
- small scale radiative corrections

