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What Top Mass is Measured at the LHC? 
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Why the top quark is not just heavy 

•  Top quark: heaviest known particle 
• Most sensitive to the mechanism 

of mass generation 
• Peculiar role in the generation of 

flavor.  
•  Top might not be the SM-Top, but 

have a non-SM component. 
•  Top as calibration tool for new 

physics particles (SUSY and other 
exotics) 

•  Top production major background 
it new physics searches 

• One of crucial motivations for 
SUSY 

• Excellent ground for high-precision 
studies of QCD and electroweak 
physics  
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Outline 

•  Introduction    
•  Monte Carlo generators and the top quark mass 
•  Calibration of the Monte Carlo top mass parameter 
•  Theory for boosted top quarks factorization 
•  Preliminary detailed results of first serious systematic analysis 
•  Summary, future plans 

In collaboration with:  
M. Butenschön 
B. Dehnadi,  
V. Mateu,  
M. Preisser 
I. Stewart CALIP

ER
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A small history on top mass reconstruction 

•  Many individual measurements with 
uncertainty below 1 GeV. 

•  Some discrepancies between LHC and 
Tevatron 

•  Reached uncertainties < 0.5 MeV. 
•  Alternative method with uncertainties             

> 1.5 GeV.  



⊕ High top mass sensitivity 
⊖ Precision of MC ? 
⊖ Meaning of mt

MC ?  
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Main Top Mass Measurements Methods 
LHC+Tevatron  

Direct Reconstruction:  

kinematic mass 
determination 

Δ mt ~ 200 MeV (projection) 

Δ mt ∼ 0.5 GeV 

Determination of 
the best-fit value of 

the Monte-Carlo 
top quark mass 

parameter 
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Monte-Carlo Event Generators 

•  Full simulation of all processes (all experimental aspects accessible) 
•  QCD-inspired:   partly first principles QCD  ⇔  partly model  (observable-dependent) 
•  Description power of data better than intrinsic theory accuracy.  
•  Top quark: treated like a real particle  (mt

MC ≈ mt
pole +?).                                           

Uncertainty (a): But how precise is modelling?          Part of exp. Analyses  
Unvertainty (b): What is the meaning of MC QCD parameters?           
Depends strictly speaking on the observable, because of model character of MCs ! 
Must be adressed for each type of observable (until we have better MCs). 

But pole mass ambiguous by O(1 GeV) due to confinement. 
Better mass definition needed. 
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MC Top Quark Mass 

MS Scheme: 

MSR Scheme: 

Short-distance mass that smoothly interpolates all R scales 

(R < m(m))

AHH, Stewart 2008 
AHH,  2014 

MSR Mass Definition 

•  small size of Δt,MC   
•  Renormalon-free 
•  little parametric dependence on 

other parameters 

mMC
t = mMSR

t (R = 1 GeV) + �t,MC(R = 1 GeV)

�t,MC(1 GeV) ⇠ O(1 GeV)
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Calibration of the MC Top Mass 

1)  Strongly mass-sensitive hadron level observable (as closely as 
possible related to reconstructed invariant mass distribution !)  

2)  Accurate analytic hadron level QCD predictions at ≧ NLL/NLO with 
full control over the quark mass scheme dependence.  

3)  QCD masses as function of mt
MC

 from fits of observable. 
4)  Cross check observable independence  

Method:  

•  different tunings 
•  parton showers 
•  color reconnection 
•  Intrinsic error, … 

mMC
t = mMSR

t (R = 1 GeV) + �t,MC(R = 1 GeV)

�t,MC(1 GeV) = �̄ + ��MC + ��pQCD + ��param

•  perturbative error 
•  scale uncertainties 
•  electroweak effects 

•  strong coupling  αs 
•  Non-perturbative 

parameters 

✓ 

✓ 

✓ 

Monte Carlo errors:  QCD errors:  Parametric errors:  

Treated in our 
analysis 

Experimental 
systematics 
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Thrust Distribution 

Observable: 2-jettiness in e+e-  for  Q ~ pT ≫ mt      (boosted tops) 

⌧ = 1�max~n

P
i |~n · ~pi|

Q

⌧!0⇡ M2
1 + M2

2

Q2

Invariant mass distribution in the resonance region  
of wide hemisphere jets ! 
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Boosted Top Mass Measurements at CMS 

•  Top mass from reconstruction of boosted tops consistent with low pT results. 
•  More precise studies possible with more statistics from Run2. 



•  VFNS for final state jets (with massive quarks): log summation incl. mass 
•  Boostet fat top jets 
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Factorization for Event Shapes 

Becher, Schwartz (2008) 
 
 

Fleming, AHH, Mantry, Stewart  2007 
 
 

Bauer, Fleming, Lee, Sterman 
(2008) 
 

Korshemski, Sterman 1995-2000 
 

Abbate, AHH, Fickinger, Mateu, 
Stewart  2010 
 
 

Gritschacher, AHH, Jemos, Mateu Pietrulewicz 2013-2014 
 
 
Butenschön, Dehnadi, AHH, Mateu 2016 (to appear soon) 
 
 

Extension to massive quarks: 

Massless quarks: 

NNLL + NLO + non-singular + hadronization + renormalon-subtraction   
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b(oosted)HQET Factorization 

Yukawa 
corrections here! 
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b(oosted)HQET Factorization 

mt ! ¡ t

Jet function: 

•  perturbative, any mass scheme  
•  depends on 
•  Breit-Wigner at tree level  
•  Gauge-invariant off-shell top 

quark dynamics 

Fleming, AHH, Mantry, Stewart  2007 
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b(oosted)HQET Factorization 
Is the pole mass determining the top single particle pole? 

observable peak 

pole mass peak 

→ pole mass and observable peak     
separated by renormalon   

  

complex ŝ-plane

NO ! 

→ pole mass peak residue decreases 
with order 

  → MSR mass close to observable peak 
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Profile Functions 



d�

d⌧2
= f(mMSR

t (R),↵s(MZ),⌦1,⌦2, . . . , µh, µj , µs, µm, R,�t)
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2-Jettiness for Top Production (QCD) 

MSR mass 
  

MSR mass 
  

•  Good convergence 
•  Reduction of scale 

uncertainty (NLL to NNLL) 
•  Control over whole 

distribution 

•  Higher mass sensitivity for 
lower Q (pT) 

•  Finite lifetime effects 
included 

•  Dependence on non-
perturbative parameters 

•  Convergence: Ω1,2,… 

Non-perturbative renorm. scales finite lifetime 

Q=700 GeV Q=1400 GeV 

Q=700 GeV Q=1400 GeV 

any scheme possible 



d�

d⌧2
= f(mMSR

t (R),↵s(MZ),⌦1,⌦2, . . . , µh, µj , µs, µm, R,�t)
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Fit Procedure Details 

Non-perturbative renorm. scales finite lifetime any scheme possible 

•  Fit parameters: 
•  Perturbative error: fits for 500 randomly picked sets of renor. scales 
•  Tunings: 1 (“very old”), 3 (“LEP”), 7 (“Monash”) 
•  Top quark width: 
•  External smearing (Detector effects):                                                         

(just for cross checks) 
•  Pythia masses: 
•  Strong coupling:  
•  Fit possible for any order / mass scheme (so far NLL+NNLL / MSR) 

 

mMSR
t (R), ↵s(MZ), ⌦1, ⌦2, . . . ,

�t = dynamical (default), 0.7, 1.4, 2.0GeV

⌦1,smear = 0, 0.5, . . . , 3.0, 3.5, GeV

mPythia
t = 170, . . . , 175GeV

QCD parameters measured from Pythia 

Number of fits entering the first analysis: 2.8 10^6      

↵s(MZ) = 0.114, 0.116, 0.118, 0.120, 0.122



•  Good agreement of Pythia 8.2 with        
NNLL+NLO QCD description 

•  Pythia statistics: 106 events 
•  Discrepancies in distribution tail and for 

higher energies (Pythia is less reliable where 
fixed-order results valid, well reliable in soft-
collinear limit) 

•  Pythia kink issue ? 
•  Excellent sensitivity to the top quark mass. 
•  Tree-Level:  
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Peak Fits 

Pythia 
QCD 

Default renormalization scales; Γt=1.4 GeV, 
tune 3, Ω1,smear=0 GeV, mt

Pythia=170 GeV, 
Q={700, 1000, 1400} GeV, peak fit (60/80)%, 
normalized to fit range  

⌧peak2 = 1�

s

1� 4m2
t

Q2

⌧2

d�/⌧2



•  Very strong sensitivity to mt 

•  Low sensitivity to strong coupling 

•  Take strong coupling as input 
•  𝝌2

min and δmt
stat do  not have any 

physical meaning  

•  We use rescaled 𝝌2/dof (PDG 
prescription) to define “intrinsic MC 
compatibility uncertainty”  
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Peak Fits 
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Default renormalization scales; Γt=1.4 GeV, 
tune 7, Ω1,smear=2.5 GeV, mt

Pythia=171 GeV, 
Q={700, 1000, 1400} GeV, peak fit (60/80)%  �2

�2 mMSR
t (5 GeV)

↵s(MZ)

𝝌2
min ~ O(100) 
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Peak Fits: mt
MSR(1 GeV) 

Preliminary 
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Order Behavior: MSR vs. Pole Mass 

•  Very good stability for MSR mass 
•  Mass mt

MSR(1GeV) mass definition closest to 
the MC mass. 

•  Pole mass shows much worse convergence. 
•  Poles mass not close numerically to the MC 

mass: numbers are observable dependent 
and great care has to be taken to use the 
results as input in other calculations. 

•  Current world average: 
          mMC = 172.44 ± 0.49 GeV 

Preliminary 
mt

MSR(1GeV)  
[NNLL] 

mt
MSR(1GeV)  

[NLL] 

mt
pole  

[NNLL] 

mt
pole 

[NLL] 

mMC=173 GeV 
 
Γt=1.4 GeV 
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Peak Fits: mt
MSR(1 GeV) 

Distribution of covervage range /2: each from scan over 500 profile functions 

Preliminary 

mt
MC=170 mt

MC=171 mt
MC=172 

mt
MC=175 mt

MC=174 mt
MC=173 

mt
MC=170 mt

MC=171 mt
MC=172 

mt
MC=175 mt

MC=174 mt
MC=173 

NNLL 

NLL 

•  Renormalization scale 
error 

•  NNLL: 150-170 MeV 
•  NLL: 250-300 MeV 

•  Good convergence! 

§  Histograms include 
αS(MZ)=0.114 – 0.122 
and Γt=-1,1.4, and tunes 
1,3,7;  7 Q sets, 2 bin fit 
ranges                      
(252 combinations) 
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Peak Fits: mt
MSR(1 GeV) 

Preliminary 

Tune 1 Tune 3 Tune 7 

mt
MC=170 

mt
MC=171 

mt
MC=172 

mt
MC=175 

mt
MC=174 

mt
MC=173 

mt
MSR[αs(MZ)] – mt

MSR[0.118]   

•  Small sensitivity of mt
MSR(1GeV) on 

αs(Mz). [~50 MeV error]  ✔ 

Parametric dependence on strong coupling 

↵s(MZ)

§  Error bars: envelope of best mass 
value distribution in 500 profile 
function fits  
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Peak Fits: mt
MSR(1 GeV) 

Preliminary 

Tune 1 Tune 3 Tune 7 

mt
MC=170 

mt
MC=171 

mt
MC=172 

mt
MC=175 

mt
MC=174 

mt
MC=173 

mt(mt)[αs(MZ)] – mt(mt)[0.118]   

 
•  Large sensitivity of MSbar mass on 
αs(Mz). [not an error, but calculated from 
MSR mass]    ✔ 

•  The MC top mass IS FAR AWAY from 
the MSbar mass. 

Parametric dependence on strong coupling 

§  Error bars: envelope of best mass 
value distribution in 500 profile 
function fits  

↵s(MZ)
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Peak Fits: mt
MSR(1 GeV) 

Preliminary 

mt
MC=170 mt

MC=171 mt
MC=172 

mt
MC=175 mt

MC=174 mt
MC=173 

mt
MC=170 mt

MC=171 mt
MC=172 

mt
MC=175 mt

MC=174 mt
MC=173 

NNLL 

NLL 

•  Coverage is measure for 
intrinsic MC uncertainty  

•  NNLL: ~200 MeV 
•  NLL: ~ 200 MeV 

•  Probably never before   
accounted in 
reconstruction analyses 

•  Measure for ultimate 
precision (MC 
dependent !) 

Intrinsic MC Compatibility Error (distribution of mean values) 

§  Histograms include 
αS(MZ)=0.114 – 0.122 
and Γt=-1,1.4, and tunes 
1,3,7;  7 Q sets, 2 bin fit 
ranges                      
(252 combinations) 
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Peak Fits: mt
MSR(1 GeV) 

Preliminary 

αS(MZ)=0.116 

mt
MC=170 

mt
MC=171 

mt
MC=172 

mt
MC=175 

mt
MC=174 

mt
MC=173 

mt
MSR[tune] – mt

MSR[tune 7]   

•  Clear sensitivity to tune. 

•  MC top mass is tune-dependent ! 
•  Tune-dependence is not an error ! 

•  Opposite dependence should be visible in 
MC top mass determinations from 
experimental data.  

     (highly nontrivial validation) 

Tune dependence αS(MZ)=0.118 αS(MZ)=0.120 

1 3 7 

§  Top widths: Γt=-1,1.4 
§  Error bars: standard deviation of 

best mass value distribution in 500 
profile function fits  
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Summary 
•  First serious precise MC top quark mass calibration based on e+e-  2-jettiness   
      (large pT): closely related to observables dominating the reconstruction method 

•  NNLL+NLO QCD calculations based on an extension of the SCET approach 
concerning massive quark effects (all large logs incl. Ln(m)’s summed 
systematically). 

•  The Monte Carlo top mass calibration in terms of mt
MSR(1GeV): 

•  MC top mass is tune-dependent and MC dependent !  
      Using MC top mass calibration might eliminate these error sources  
      from the experimental analyses.   
      Confirmation of the dependence predicted by calibration provides highly 
      non-trivial cross check concerning the universality of the calibration.  

§  Scale dependence (NNLL):           ~ 170 MeV 
§  αS dependence  (δαS =0.002):       ~   50 MeV 
§  Intrinsic MC error:                          ~ 200 MeV Preliminary !!! 
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Outlook & Plans 
 
•  Full verified error analysis @  NNLL/NLO   → publication 

•  Calibration Package for public use 

•  Heavy jet mass, C-parameter (NNLL),  

•  pp-2-jettiness analysis (NLL) w.i.p. 

•  NNNLL+NNLO (2-jettiness for e+e-)  w.i.p 

•  Mass (+ Yukawa coupling) conversions w. QCD + electroweak (Yukawa effects)  

§  Different sets of Q (pT) values 
§  Different fit ranges 
§  Bug fixes 

§  Calibration mt
MC  →  mt

MSR(1GeV) 
§  Code mt

MSR(1GeV) → any other scheme 
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Backup Slides 
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Pole Mass from MSR Mass 

mpole

t �mMSR

t (1GeV) =0.173 + 0.138 + 0.159 + 0.23 GeV

+ 0.53 + 1.43 + 4.54 + 16.6 GeV

+ 68.6 + 317.7 + 1629 + 9158 GeV

calculated 
 
 extrapolated 
 
 

↵s(MZ) = 0.118
nf = 5

•  Size of terms consistent with scale error estimate of calibration. 
•  No stable determination of pole mass.  

O(↵s) O(↵2
s) O(↵3

s) O(↵4
s)
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MSR Mass Definition 

Peak of 
invariant mass 

distribution, 
endpoints 

  
Top-antitop 
threshold at 

the ILC 
  

Total cross section, 
e.w.precsion obs., 

Unification, 
MSbar mass 

  

AH, Stewart: arXive:0808.0222    
mMC

t = mMSR
t (3+6

�2 GeV) = mMSR
t (3 GeV)+0.6

�0.3

Good choice for R: 

Of order of the typical scale 
of the observable used to 
measure the top mass.  

1S, PS,…
masses 
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Masses Loop-Theorists Like to use 
Total cross section (LHC/Tev): 

Threshold cross section (ILC): 

Inv. mass reconstruction (ILC/LHC): 

mMSR
t (R = mt) = mt(mt)

mMSR
t (R ⇠ �t) , mjet

t (R)

mMSR
t (R ⇠ 20 GeV) , m1S

t , mPS
t (R)

Langenfeld, Moch, Uwer 

Fleming, AH, Mantry, Stewart  

Beneke, AH, Melnikov, Nagano, 
Penin, Pivovarov, Teubner, Signer, 
Smirnov, Sumino, Yakovlev, 
Yeklkovski   

•  more inclusive 
•  sensitive to top production 

mechanism (pdf, hard scale) 
•  indirect top mass sensitivity 
•  large scale radiative corrections 

•  more exclusive 
•  sensitive to top final state 

interactions (low scale) 
•  direct top mass sensitivity 
•  small scale radiative corrections 

Mt = M (O)
t + Mt(0)↵s + . . .

Mt = M (O)

t + hp
Bohr

i↵s + . . .

Mt = M (O)
t + �t↵s + . . .

hp
Bohr

i = 20 GeV

�t = 1.3 GeV

Mass schemes 
related to different 

computational 
methods  

Relations 
computable in 
perturbation 

theory 


