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HOW TO SET UP A PHYSICAL MODEL? 



HOW TO SET UP A PHYSICAL MODEL? 
1. CHICKEN FIRST, EGGS LATER 



How to set up a physical model? 

• Define the required 

– Physical degrees of freedom 

– Hilbert space 

– Required (reasonable) symmetries 

• Based on which, write the most general local 
Hamiltonian, parametrized such that all the 
requirements are fulfilled 

• Find the eigenstates of the Hamiltonian 
(might be difficult). 
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How to set up a physical model? 

• Define the required 

– Physical degrees of freedom 

– Hilbert space 

– Required (reasonable) symmetries 

• Based on which, write the most general state, 
parametrized such that all the requirements are 
fulfilled 

• Find a local parent Hamiltonian – a Hamiltonian 
whose ground state is the state in study (might be 
difficult). 

 

 

 



Traditionally 

• Hamiltonians are more fundamental than states. 

• Symmetries are treated already on the 
Hamiltonian level. 

• But, as we know, this is not enough, and important 
and interesting physics has to be derived from 
particular states, like the vacuum. 

– (Spontaneous symmetry breaking) 



Without a fundamental Hamiltonian 

• One can encode required symmetries already on the 
level of some state, living in a well defined Hilbert 
space with the physical degrees of freedom. 

• Local parent Hamiltonians may be derived for such 
states (in principle). 

• Phase structure may also be studied for a set of 
states: all is needed is a parameterization. 

 



Today: States with a local symmetry 

• We wish to describe a particular (to be defined) but 
yet general set of lattice states with local gauge 
symmetry as well as other physical symmetries. 

• The states will be classified by a set of parameters. 

• Upon changing the parameters, the physical 
interpretation of the states changes, and phase 
transitions among recognized physical phases take 
place.  



Outline 

• PEPS and global symmetries 

• Gauging PEPS 

• Example: 

Gaussian fermionic PEPS for U(1) lattice gauge theories 



PEPS (PROJECTED ENTANGLED PAIR 
STATES) WITH GLOBAL SYMMETRIES 



PEPS 

• Projected Entangled Pair States 

– A type of Tensor network states 

• A type of quantum-many body states that 

– Allow to treat symmetries in a very natural way 

– Offer new approaches for the study of phase diagrams and 
other properties of many body systems 

– May be used as variational ansatze (not in this talk) 

 



Constructing PEPS on a 1d lattice 

• The state of a single site before construction consists 
of the state of a single physical “particle” and two 
virtual “particles”:  



Constructing PEPS on a 1d lattice 

• Two neighboring sites may be connected by 
projecting the virtual particles on the bond 
connecting them to a maximally entangled state. 



Constructing PEPS on a 1d lattice 

• For example, project          and        to 
 



Constructing PEPS on a 1d lattice 

• For example, project          and        to 
 



Constructing PEPS on a 1d lattice 

• Hence the name Projected Entangled Pair States 



PEPS: Important properties 

• The state is in the center: PEPS are states, and they 
are in the focus of interest. But for such states 
satisfying some reasonable physical requirements 
(e.g. translational invariance) one may construct a 
local Parent Hamiltonian – a Hamiltonian whose 
ground state is the PEPS. 

• In case you wish to (traditionally) find PEPS which are eigenstates of a 
given Hamiltonian, and not the other way around, there are some 
variational Ansätze. 

 



Symmetric PEPS 

• Parametrize the local states such that acting on the 
physical level is equivalent to acting on the virtual 
level 

 

 

 

 

 

 

• “Virtual Gauss law” 

• The physical information is stored at a single tensor 

 



Symmetric PEPS 

• A global symmetry (same g everywhere). 
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Symmetric PEPS 

• A global symmetry (same g everywhere). 
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GAUGING THE SYMMETRY: 
PEPS WITH LOCAL GAUGE INVARIANCE 



Local symmetry 

• Different group elements on different sites. 
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Local symmetry 

• Different group elements on different sites. 
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Matter tensors 

• As before, 

 

 

 

 

May be achieved by 

 

 

(but it is not a single choice). 

EZ and M. Burrello, New J. Phys. 18 043008 (2016) 



Gauge (connection) tensors 

• But now, also 

• The symmetry group is, in general, non-Abelian, and thus left and right  
transformations are different, and the physical state should be described by 
both left and right quantum numbers transforming differently. 

• The requirement is met if the physical states are “identified” with the virtual 
ones. EZ and M. Burrello, New J. Phys. 18 043008 (2016) 



Local symmetry 

• Add other tensors (gauge connections) on the links 
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FERMIONIC GAUSSIAN PEPS 
WITH LOCAL U(1) SYMMETRY 

EZ, M. Burrello, T. B. Wahl and J. I. Cirac, Ann. Phys. 363, 385 (2015).  



Gaussian States 

• Ground states of quadratic Hamiltonians. 

• Completely described in terms of their covariance 
matrix     . 

• For fermions, it is convenient to express everything in 
terms of Majorana modes 

 

 

 



Fermionic PEPS 

• Instead of states, use second-quantized fermionic 
operators to construct the PEPS (since a tensor 
product structure is not defined for fermions). 

 

• The parent Hamiltonian of fermionic Gaussian PEPS 
may be easily obtained from its covariance matrix. 

 

• Projecting to the maximally entangled bond states is 
very simple for Gaussian states (using Gaussian 
mapping). 



The physical ingredients 

• 2d spatial lattice (2+1d model); on every vertex (site) – a 
single fermionic mode         . 

• The fermions are staggered, with charge 

 

 

 

– Even vertices – particles; 

– Odd vertices – anti-particles; 

– The “real degrees of freedom” will be the result of a particle-
hole transformation on the odd sublattice. Then a continuum 
spinor is formed out of blocking two neighboring sites. 



The required symmetries 

• Translation invariance  Charge conjugation 

• Rotation (lattice) invariance 

• Global U(1) invariance  Local gauge invariance 
 
 
 



The PEPS ingredients 

• One physical fermion per site  

– “Physical fermion” 

• Eight virtual fermions 

– “Virtual electric fields” 

 

• Created from the vacuum by 

 

 

• All the physical info – at the 
level of a single site 



Studying Gaussian fPEPS 

• Before gauging, with the formalism of Gaussian 
mapping, one may obtain an exact form of the PEPS 
(BCS) and the parent Hamiltonian (BCS) 



Phases of the fermionic theory 
Gapless lines: 
A. Strong Pairing 
 
 
B. Weak Pairing 
 
 
 
C. Weak Pairing 
 
 
D. E. Weak Pairing, 
intersection points 
 
 
 
 

An example parent Hamiltonian in the gapped regime (y=z=0, after Particle-Hole trans. of  
the odd sites: 
 

Staggered mass 
“Massless Dirac” 



Gauging the PEPS 

• The symmetry is local now 

 

• Add “bosonic” Hilbert physical states on the links, 
spanned by 

• Electric field operator: 

• Raising and lowering operators (“Wilson operators”) 



Gauging the PEPS 
• Make the substitution 

 
 
 
 
in the fermionic local state. 

• That guarantees the symmetry condition for the 
“gauge tensor”: the virtual gauge symmetry becomes 
a physical one 

 

 



Studying the PEPS 

• We use a cylindrical geometry: one dimension is 
periodic, the other is open. 



Studying the PEPS 

• We use a cylindrical geometry: one dimension is 
periodic, the other is open. 

• No external charges are put on the 
open edges (boundary condition). 



Studying the PEPS 

• The system may be converted 
effectively to 1d by contracting the 
rows. 

 



Studying the PEPS 

• A row-by-row transfer 
operator for calculation 
of correlations may 
be defined. 
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Studying the PEPS 

• A gap between the 
two highest 
eigenvalues of the 
transfer operator 
corresponds to 
exponentially 
decaying 
correlations in real 
space. 

• The transfer 
operator may be 
used as a probe for 
phase transitions. 

. 

. 

. 
 



What are the phases? 

• Finding the phase boundaries is not enough, one 
should still identify the physical behavior of the 
various gapped phases. 

• Several physical observables (order parameters) may 
be evaluated for the PEPS and help to give physical 
meanings to the phases found numerically (as well as 
another probe for the positions of the boundaries). 



Phase diagrams from the transfer operator 

Pure gauge 
t=0 

Interacting 
t=1 

Width - 6 Width - 8 



Pure gauge theory – Wilson Loops 

• Confined static charges – 
area law 

 

• Deconfined static 
charges – perimeter law 



The phases of the pure gauge theory 

B,C,D – clear results from the Wilson loops 
(also from other computations, such as 
the Creutz parameter) 
 
A,D – also some analytical results from 1/z or 1/y 
expansions. 



Summary 

• PEPS are very useful for the study of many body 
systems with symmetries – even when the 
symmetries are local. 

• With a given set of symmetries, one may 
parameterize a set of states and study its phase 
structure, using various methods such as transfer 
operator and direct computation of order 
parameters. 

• Our proof-of-principle study of the U(1) case has 
resulted with the known phases of the theory. 

 



Thank you! 

• The talk is based on 
– Fermionic projected entangled pair states and local U(1) gauge 

theories. EZ, M. Burrello, T. B. Wahl and J. I. Cirac, Ann. Phys. 363, 385 
(2015).  

– Building Projected Entangled Pair States with a Local Gauge 
Symmetry. EZ and M. Burrello, New J. Phys. 18 043008 (2016) 

– Formulation of lattice gauge theories for quantum simulations. EZ and 
M. Burrello, Phys. Rev. D 91, 054506 (2015). 

 

• See also other works on the topic, from MPQ, ICFO, Vienna-
Ghent, Innsbruck-Ulm, including variational 
approaches for LGTs as well. 

 

 

 


