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Why we care about neutrinos

. . properties:
experimentally unsolved: anomalies... —_—

- just weak interacting

- no observed right handed
theoretical unsolved: (all about mass) partner

. . . Desperately seeking sterile
@ different mixing matrices then quarks

The three known types of neutrino might be
“balanced out” by a bashful fourth type

@ normal or inverted mass hierarchy
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Advantage of right handed neutrinos

@ Explain mass hierarchy in right handed neutrino mass models
via the seesaw mechanism. [m,, = TeV]
(with additional higgs doublets...)

@ Dark matter candidates [keV < m,, < TeV]

@ Baryon asymmetry via Leptogenesis in YMSM models
[keV s m,, < GeV]

@ Detected anomalies at: LSND, MiniBooNE, gallium detectors:
GALLEX, SAGE, reactor experiments... [m,, ~ eV]
(a.o0. also IceCube)

tightest constrains from cosmology:

@ Boundaries from BBN

@ CMB measurement from PLANCK sets limits on N, and also
the Large Scale Structure.
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First ingredient for a good model
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Second ingredient for a good model

Problem:
Yukawa couplings Y, = m7 small, when m, small (v ~ 246 GeV, VEV)

Other gauge couplings large: e.g. Positron e = V4na = 0.303

= small Y, seem to be unnatural
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Yukawa couplings Y, =~ 7+ small, when m, small (v ~ 246 GeV, VEV)

Other gauge couplings large: e.g. Positron e = V4na = 0.303

= small Y, seem to be unnatural

solution: multi-Higgs doublet model (mHdm)
include ny Higgs doublets

¢+ 0 7 2 2
o~ (38) 00l0 = %, Ziwf ~ (246Gev)? - small i s0

that Y, ~ O(e). interesting effect:

\
lepton Yukawa observable processes:
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dem Problem: FCNI from hart brocken

Flavour-changing neutral scalar interactions (FCNIs) '*P*omumber
at tree level appear.

= strong experimental bounds on FCNIs

Solution: SOft lepton number L, violation (=, 4,1}
L, conservation:

in Yukawa interactions

=diag. Y, Y, = diag. M;,, Mp = diag(me, m,, m;)

L, explicit soft breaking:

in Majoranaterm = non-diag. Mg

PMNS
additional advantages: ‘ v D - “
e explain atm. & sol. maxaimal mixing [Grimus, 01] g
e ampl. of FC processes aré finite at one—.loop g - F
« ampl. are stable under radiative corrections v @ L
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The model
Nice model but: Can it be tested? Does it bring Limits?

m, small
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The model
Evtl. experimentally testable processes:

Additional fermion interactions:
AT = py) o« 1/mé,

Xl >V\/\/\'Wt /\’.‘> o _Sx
| | A(Z - T+H_) x 1/m2,:y
ol » ) 1/m3 ny=1
S - —ote- R =
X,,,>M/W X,> AT —preter) o { const. ny>1

Processes including the sub-process I~ — I'"S%, (8% — e*e™) have

(ny = 2) non-mg-suppressed contributions from graphs with charged-

scala exchange S* (plot) in their Amplitudes A, [Grimus, Lavoura, 02].
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Figure: The tree diagrams for t= — u~S%
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Expected outcome and goals

Nice model but: Can it be tested? Does it bring Limits?

Expectations:

@ Finding upper bounds on flavour diagonal Yukawa couplings
(Y}, Y)) at one loop (with mg — o)

@ Finding lower benchmarks on seesaw scale mpg

= with comparing them to the experimental upper bounds on
branching ratios.

@ Pointing out experimental signatures.
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