

P&ID of SBN ND cryogenics

Michael Geynisman (for CERN-Fermilab Team) **Neutrino Platform General Meeting** March 3, 2016

The P&ID for the SBN ND cryogenics:

	Shares similarities with ProtoDUNE single phase and DUNE cryogenic system (for the benefit of prototyping), i.e. condenser pumps
	Has some unique features, i.e. LAr spray to control ullage temperature < 100K
	Shares similarities with SBN FD cryogenic system for the external cryogenics, i.e. identical LAr dewars supplied from CERN
Th	is presentation shows:
	P&ID (4 sheets) and modes of operations
Ц	Interfaces between internal-proximity-external
	Location of equipment inside and outside the SBN ND building
	Proposed schedule to finalize P&ID for equipment and piping tender

Requirements for **SBND** Cryogenics - Cryogenics

Required Parameter for Cryogenics	Value
LAr purity in cryostat	3 ms electron lifetime (100 ppt O2 equivalent)
Nitrogen contamination	Less than 2 ppm (to coincide with T600)
Design Pressure	345 mbarg (~5 psig)
Operating gas pressure	70 mbar (~1 psig) with +/- 5% (~0.05 psig)
GAr Piston purge rate of rise	1.2 m/hr
Membrane cool-down rate	From manufacturer (most likely < 10-15 K/hr)
TPCs cool-down rate	< 40 K/hr < 10 K/m (vertically)
Mechanical load on TPC	The LAr or the gas jet pressure shall not apply a mechanical load to the TPC greater than 200 Pascal
Nominal LAr purification flow rate (filling/ops)	1 volume change/day 7.9 $\mathrm{m}^3/\mathrm{hr} = 35$ gpm. Less circulation flow is allowed , e.g. 10 gpm, is rationale is verified. Similar to 1 change per 8 days for T600
All surfaces in the ullage during operations	< 100 K
Convective currents inside cryostat	< 10 cm/s
GAr purge within insulation (From LBNF)	1 volume change/day of the open space between insulation panels
Condenser cooling power	Based on fill with LAr (~25 kW)
Grounding and noise requirement	Electrical isolation from cryostat. Approval by SBND committee supervising detector and building grounding

Interface internal - proximity via fixed top plate:

Cryogenic penetrations

Pos.	Description	Diam	Qty
1,2,19,20	Argon purge gas	2"	4
3	Argon make up gas	1.75"	1
4	Argon purge gas	1.75"	1
5	Argon gas momentum	1.25"	1
6	Argon gas cooldown	1.25"	1
7	Argon liquid cooldown	3.75"	1
8	Argon liquid distribution	3.75"	1
9	Argon liquid to cold roof	3.75"	1
10	Argon liquid cooldown path to condenser	3.75"	1
11	Argon gas boil-off	4.75"	1
12,13	Liquid level probes	0,75	2
14	Argon gas vent port	12"	1
15	Spare port	4.75"	1
16	Argon vacuum relief	12"	1
17,18	Instrumentation port	0.375"	2
21	Instrumentation port	4.25"	1

Detector penetrations

Pos.	Description	Diameter [mm]	Qty.
22	High Voltage Feedthrough		1
23	Manhole		1

This component is described by 3 associated drawings: -1/3: CENSNDCI0001 (main sheet) -2/3: CENSNDCI0002

SBND Cryostet Integration		DIVAN	E. Seleteknyn	2016-12-01
INTEGRATION ASSEMBLY STEEL	SCALE	CONTROLLED		
STRUCTURE & TOP CAP SBND		MELENEED		
STRUCTURE & TOP CAP SEND		APTROVED		
		CAD Document Husbar ST0726654_03		
		REPLACES		

NON VALABLE POUR EXECUTION - CENSNDCIO002 1

Interface <u>internal - proximity</u> via top plate and TPC:

Interface internal - proximity via top plate and TPC:

5 3/3/2016

Interface <u>proximity – external</u> (typical example):

Interface cryo-building (typical examples):

Interface cryo - building (typical examples):

Interface cryo - building (typical examples):

Interface to SBN ND building (typical examples):

Interface to cryo - building (typical examples):

Projected schedule to complete P&ID SBN ND cryogenics:

■ Need to be complete at the same time as P&ID fro SBN FD, but haven't been discussed in detail for either proximity (CERN) or internal (Fermi) cryogenics

Stage of completion of PID (due by:)	SBN FD (leading)	SBN ND (follow)
Layout is complete at FNAL – transferred to CERN	March 3	March 3
Preliminary design of area of responsibility (layout, discussion of equipment, but <u>no</u> sizing or valve & instrumentation lists)	CERN is done FNAL is done	CERN has not started yet. Response is needed from CERN (proximity) by March 11 FNAL is done for external, need to complete internal.
Lines sizing and revision by CERN and FNAL	March 11	March 18 (?)
New numbering system implemented by FNAL	April 1	April 8 (?)
Ready for review (common, by CERN and FNAL)	April 15	April 15 (?)
Prepare equipment and piping specifications	May 13	May 13 (?)
Cross review and readiness for equipment and piping specifications. Specs are ready for CERN Specs committee review.	May 20	May 20 (?)

