CMS Tracker Alignment Strategy with Cosmic Muons

Andrei Gritsan

Johns Hopkins University

FOR

CMS Tracker Alignment Group

June 15, 2009

3rd LHC Alignment Workshop, CERN, Switzerland
Tracker in the CMS Detector

CMS Tracker

1440 Si Pixel
15148 Si Strip modules
Input to CMS Tracker alignment algorithms:

- Laser Alignment System
- optical survey
- tracks from cosmic muon runs ⇒ ultimate precision

Tracker Integration Facility (TIF) with partial Tracker in 2007
CMS at Point-5 ("CRAFT" cosmic run) with full Tracker in 2008

Detailed results in the next talk (by E. Migliore)

Alignment is a big project, but only the final step in commissioning

part of the CMS tracker alignment team “on the ground”
CMS Tracker Alignment Goal

- Alignment goal: nail down (few μm) all 16,588 modules (\times 6 dof)

- Minimize residuals

$$\chi^2(p_{\text{modules}}, q_{\text{tracks}}) = \sum_{i=1}^{N_{\text{residuals}}} r_i^T V_i^{-1} r_i$$

Andrei Gritsan, JHU

June 15, 2009
Laser Alignment System (LAS)

- See talk at 2nd LHC alignment workshop (June 2007):
 B. Wittmer “The Laser Alignment System of the CMS Tracker”

- Connect large structures (8 sectors in ϕ): TIB - TOB - TEC

- Cosmic runs for commissioning: standalone $\sim 100 \mu m$, relative $\sim 20 \mu m$

- Tracker geometry: note 2D (100 mrad strip angle) and 1D modules

- LAS vs. Track-based ϕ of TEC disks
• See talk at 2nd LHC alignment workshop (June 2007):
 A.G. “First CMS Alignment Geometry: Survey Data and Their Implementation”

Barrels:
 PXB - modules (2D only)
 TIB - modules and up
 TOB - barrel

Endcaps:
 PXF - modules and up
 TID - modules and up
 TEC - disks and endcap

• Tracks + Survey in “local algorithm”, to constrain all 6 dof:

\[
\chi^2_{\text{module}} = \sum_i r_i^T (p_m) V_i^{-1} r_i (p_m) + \sum_j r_{*j}^T (p_m) V_{*j}^{-1} r_{*j} (p_m)
\]

following BABAR implementation: arXiv:0809.3823
Statistical Methods in CMS Tracker Alignment

- **Local iterative method** ("Hits & Impact Points") CMS-NOTE-2006/018

\[
p_m = \left[\sum_i J_i^T V_i^{-1} J_i \right]^{-1} \left[\sum_i J_i^T V_i^{-1} r_i \right]
\]

<table>
<thead>
<tr>
<th>pros</th>
<th>full Kalman Filter track model</th>
<th>simple implementation, all dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>ignore correlations in one iteration</td>
<td>large CPU with many iterations</td>
</tr>
</tbody>
</table>

- **Global method** ("Millepede II") NIM A 566, 5 (2006), talk by V. Blobel

\[
\chi^2(p, q) = \sum_j \sum_i \frac{(y_{ji} - f_{ji}(p, q_j))^2}{\sigma^2_{ji}}
\]

<table>
<thead>
<tr>
<th>pros</th>
<th>model module correlations</th>
<th>less CPU with one or few iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>simple helix trajectory model</td>
<td>large matrix may limit N parameters</td>
</tr>
</tbody>
</table>

- **Kalman filter algorithm** with MC and TIF data: see talk by E. Widl
Tracker Alignment at Integration Facility

- First integrated tracker: spring-summer 2007
arXiv:0904.1220

$\sim 15\%$ of strip tracker only
no B-field, assume $p = 1$ GeV/c
\Rightarrow multiple scattering
cannot be predicted per event

- Reach $\sim 50/80 \mu m$ in TOB/TIB

Design: mean = 78.4
Survey: mean = 63.7
Aligned: mean = 43.0

Data - no alignment
Data - HIP alignment
MC - ideal geometry
MC - tuned misalignment (TIB = 80 μm, TOB = 50 μm)
Alignment at Point-5 without Magnetic Field

- First experience with full Tracker: summer 2008
 - \(\sim 600k \) cosmic tracks for Tracker alignment
 - still no B-field

- Achieved \(\sim 30-40 \mu \text{m} \) in TIB/TOB
 - low statistics in Pixels and Endcaps

- Measure of alignment precision
 - Distribution of mean of the Residuals ("DMR", more later)

\[
\text{Distribution of mean of residuals for TIB}
\]

\[
\text{Distribution of mean of residuals for TOB}
\]
Alignment at Point-5 with Magnetic Field

- Best data for alignment of CMS Tracker: **fall 2008** ("CRAFT")
 - \(\sim 4 \text{M cosmic tracks} \) for Tracker alignment
 - \(B\text{-field} = 3.8\text{T} \Rightarrow \text{account for multiple scattering}, \ p > 4 \text{ GeV/c} \)

- Require good quality tracks and hits:
 - clean hits, outlier hit rejection, \(\chi^2 \) cut, min hits, 2D hits
 - accept all good tracks (statistics limited): only 3\%+1.5\% in Pixels

Andrei Gritsan, JHU
June 15, 2009
Alignment Strategy during “CRAFT”

- Multi-step approach by both algorithms to address CMS geometry:
 - large structure movement: coherent v alignment of 1D modules
 - alignment of two sides of 2D strip modules (units): u, w, γ

- Global method: 3 steps from “design”
 1. large structures (6 dof) & units (3 dof)
 2. module alignment: add α, β for TIB; 6 dof for PXB
 3. repeat (1); note above: keep <46,300 parameters, use pre-sigma

- Local method: 5 steps from survey; ~50 iterations each
 1. large structures (u, v, w, γ)
 2),3 Strip: modules (6 dof) with survey; units (3 dof)
 4),5 Pixels: ladders (6 dof); modules (6 dof)
Alignment Strategy: Merging Algorithms

- Combined method
 1. run global method ⇒ solve global correlations efficiently
 2. run local method ⇒ solve locally to match track model in all dof
- All three results are compatible, but combined is the best
 also compare to “not aligned”

Alignment Position Errors (APE) set for combined
see next talk

- Reference system: center-of-gravity and rotation move to design
Example: Pixel Residuals (local, global, combined)

- Residuals \leftarrow multiple scattering + hit errors + alignment errors
 (random) (random) (systematic)

$r\phi$ pixel hit errors $\sim 19\mu$m here
Median of the Residuals

- Again global + local → best combined
 for example: PXB better local transverse, global longitudinal

Andrei Gritsan, JHU
XIV
June 15, 2009
Summary

• CMS Tracker alignment with first data:
 Tracker construction & survey in 2006-2008
 Tracker integration cosmic run in 2007
 global CMS cosmic runs in 2008

• Successful CMS Tracker alignment algorithms:
 several complementary statistical methods
 best combination of global & local
 combine track + survey (done) and LAS (in progress) data

• Result in successful CMS Tracker alignment with cosmics
 but far from being done: cosmic and beam runs in 2009-2010
 cosmics alone has limitations, see next talk...
BACKUP
• Track reco data: reduced skim “AlCaReco” for alignment
 see talk by G. Flucke about workflow tomorrow

• Result: 16,588 module Positions (6D) and Alignment Position Errors (APE, 3D)