

LHC accelerator status and prospects

Frédérick Bordry

LHC (Large Hadron Collider)

14 TeV proton-proton accelerator-collider built in the LEP tunnel

Lead-Lead (Lead-proton) collisions

1983 : First studies for the LHC project

1988 : First magnet model (feasibility)

1994 : Approval of the LHC by the CERN Council

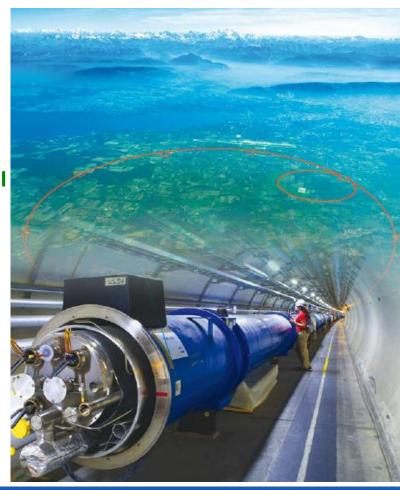
1996-1999: Series production industrialisation

1998 : Declaration of Public Utility & Start of

civil engineering

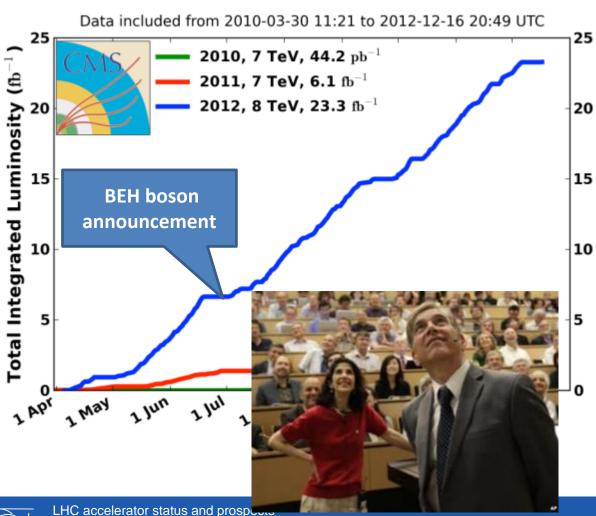
1998-2000: Placement of the main production

contracts


2004 : Start of the LHC installation

2005-2007: Magnets Installation in the tunnel

2006-2008: Hardware commissioning


2008-2009: Beam commissioning and repair

2010-2035: Physics exploitation

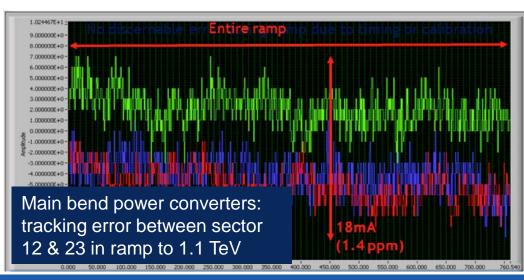
LHC 2010-2012: a rich harvest of collisions

CMS Integrated Luminosity, pp

 $\Sigma \sim 30 \text{ fb}^{-1}$

2010: **0.04** fb⁻¹
7 TeV CoM
Commissioning
2011: **6.1** fb⁻¹
7 TeV CoM
... exploring limits
2012: **23.3** fb⁻¹
8 TeV CoM
... production

7 TeV and 8 TeV in 2012 Up to 1380 bunches With 1.5 10¹¹ protons



Run 1

Run 1 (2010 – 2012)

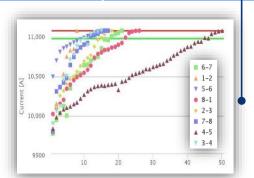
- Foundations well proven at 8 TeV
 - Magnets, vacuum, cryogenics, RF, powering, instrumentation, collimation, beam dumps etc.
- Huge amount of experience gained
 - Operations, optics, collimation...
- Healthy respect for machine protection

2013 - 2015

April '13 to Sep. '14

5th April

3rd June

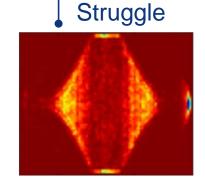

2244

Physics with record number of bunches

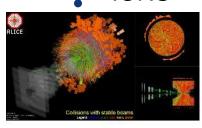
Peak luminosity 5 x 10³³ cm⁻²s⁻¹

2244

13-14 Aug 14-Apr



Dipole training campaign


10th April Beam at 6.5 TeV

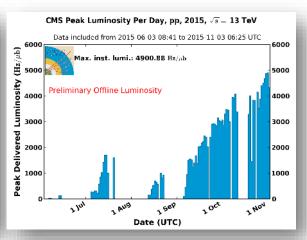
2015

28th October

IONS

Pb-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

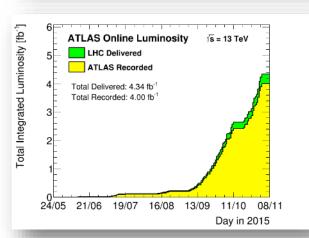
2015 LHC Luminosity at 13 TeV


5 x 10³³ cm⁻¹ s⁻¹

Design 10³⁴ cm⁻¹ s⁻¹

Peak Lumi: 5.22 x 10³³ cm⁻² s⁻¹

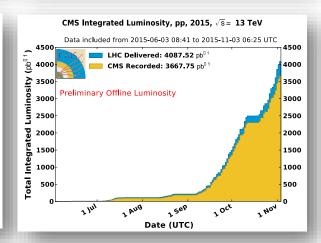
Jeak Lumi: 5.22 x 10³³ cm⁻² s⁻¹


CMS

Integrated

Achieved ~ 4.3 fb⁻¹

Last week of operation > 1 fb⁻¹

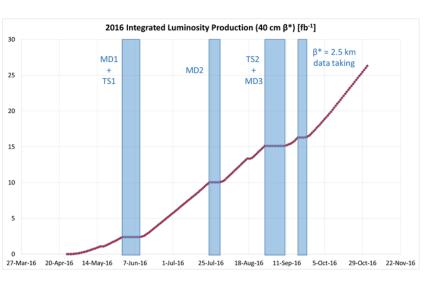


19/09

21/08

19/10

Day in 2015



LHC schedule 2016

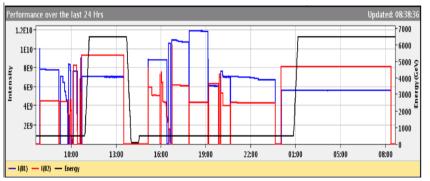
2016: a production year

Integrated luminosity goal: 2016 : ~ 25 fb⁻¹ at 13 TeV c.m

	Apr Scrubbing May						June						
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Mo	4	11	19	75	2	9	Whit 16		30	6	13	20	27
Tu							VdM		beta* 2.5 km dev.				
We							*****			TS1			
Th		commission with beam		¥	Ascension								
Fr		with beam			May Day comp				MD1				
Sa						tensity ramp-							
Su				St May	Serv	bbing as requ	red						

	July Aug					Aug	Sep							
Wk	27	2	8	29	30	31	32	33	34	35	36	37	38	39
Mo		4	11	19	25	1	9	15	22	29	5	12	E 19	76
Tu													52.58	
We					MD2					TS2	MD 3		deta*	
Th								MD			Jeune G		8	
Fr								NI D						
Sa					beta* 2.5 km dev.									
Su														

		Oct	Nov Dec								End of run osot			
W	k	40	41	42	43	44	45	46	47	48	49	50	51	52
Me	•	3	10	17	24	31	7	14	21	29	5	¥ 12	19	ж
Tu								lons					year end	
W							TS3	setup				technic	al stop	
Th									- I	on run			Lab closed	
Fr						MD 4				(p-Pb)				
Sa														
Su		,											Xmas	New Year


First circulating beams in LHC in 2016 on Easter Friday 25th March 2016

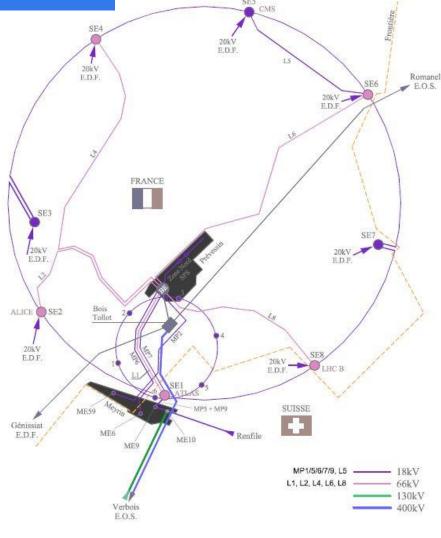
LHC Start-up 2016

Friday 25 th March	First circulating beam
Saturday 26 th March	First ramp to 6.5 TeV
Sunday 27 th March	Squeeze to 0.4 m and optics measurements
Thursday 31st March	Optics correction at 6.5 TeV (flat-top+squeeze)
Wednesday 6th April	Nominal bunch to flat-top
Friday 8 th April	Nominal bunches into collisions
Tuesday 12th April	Quiet beams
Sunday 17 th April	Aperture measurement (collision)
Thursday 21st April	72 bunch injection to 444 bunches/beam
Friday 22 nd April	First Stable Beams – 3 bunches/beam

LHC April – May 2016

Mon 25 th April	Start scrubbing	TOOOTOOI
Tues 26 th April	1668+1884 bunches	Vacuum leak on SPS dump
Weds 27 th April	Stable Beams 12 bunches.	POPS – capacitor bank
Thu 28 th April	Beam back (PS on rotating machine)	
Fri 29 th April	Stable Beams 49 bunches	Weasel Transformer Pt8
Thu 5 th May	Beam back	
Fri 20 th May	Stable Beams 1177 bunches	Rotating machine down
Sat 21st May	Fill 4947 lost after 35.5 hours	
Thu 26 th May	POPS back in action	

- Lost around 2 weeks to technical faults
- Limitation number of injected bunches to avoid stressing SPS beam dump



16621224


P8 Transformer 66 kV/18 kV

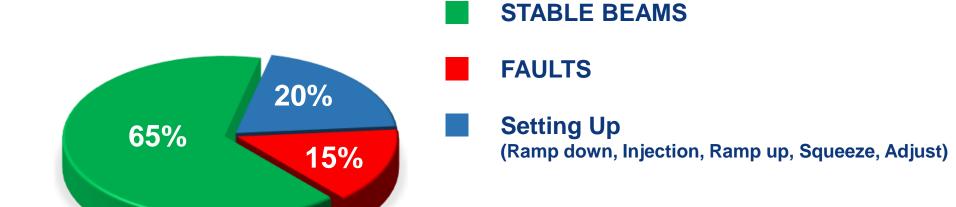
Tests divers

Eviter les dégâts de fouines

Contre les fouines avides de ronger, toute une panoplie de méthodes, plus ou moins efficaces, sont mises en oeuvre. Aucun moyen ne garantit une protection totale. Néanmoins, diverses recommandations vous montrent comment éloigner les fouines par des procédés simples.

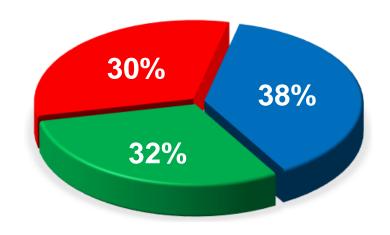
Les assurances sont mises à contribution Certes, le nombre de cas annoncés diminue, mais pour les assurances, les frais demeurent, c'est-à-dire que le coût moyen par cas est toujours plus élevé. Chaque année, les compagnies d'assurances suisses doivent débourser des dizaines de millions de francs à cause de dégâts

LHC: new schedule

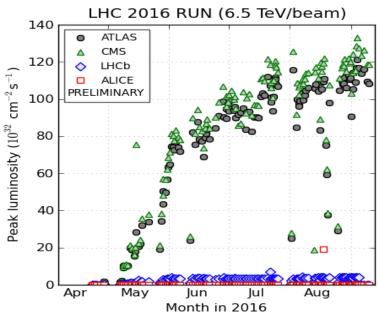


- MD1 period postponed (5 days)
- TS1 shortened to 2.5 days considerable amount done during extended stops for technical issues

	July				Aug				Sep				
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	4	11	18	25	1	8	15	22	29	5	12	19	26
Tu								MD 2				= 2.5 km taking	
We											TS2	beta* =	
Th				MD1						Jeune G		pę	
Fr								beta* 2.5 km dev.					
Sa										MD 3			
Su				beta* 2.5 km dev.						WID 3			

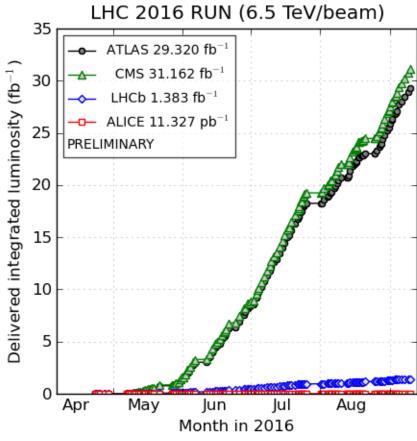


2016 Overall machine efficiency


Performance of data production

(no commissioning, MD, ...)

2015 efficiency


Peak and Integrated luminosity overview

Design luminosity > 10³⁴ cm⁻² s⁻¹

(2016-09-11 11:06 including fill 5288; scripts by C. Barschel)

LHC Limitations

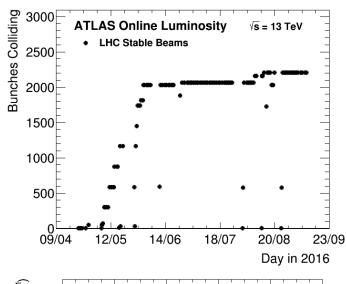
SPS beam-dump

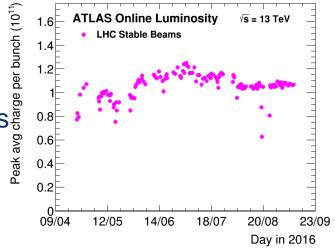
Nb of bunches per injection limited to 96 Total number of bunches: 2200

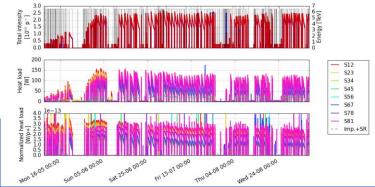
LHC Injection kickers

Outgassing from ceramic Bunch population limited to around 1.1 x 10¹¹

ctron cloud

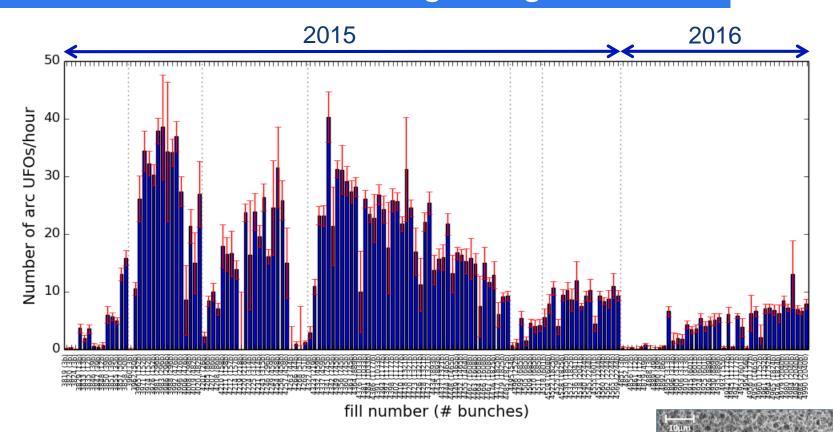

Still significant heat-load within cryogenic limits


Electron cloud

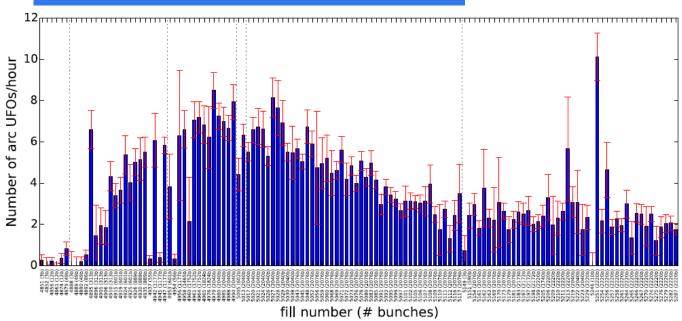

Dynamics – well handled by cryogenics feedforward – no impact on operations in the present conditions

UFOs

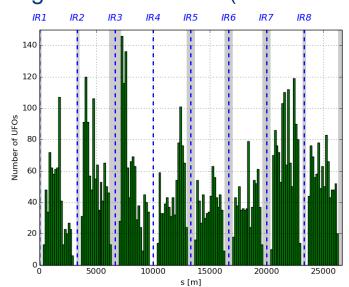
Frequency has happily conditioned down



UFOs – 2015 and beginning 2016



Arc UFOs: rates similar to end of 2015


- did not lose conditioning over the YETS stop


UFOs - 2016

longitudinal locations (whole 2016)

Recall: Dipole Training Campaign after LS1 (2015)

Each Sector Trained to 6.55TeV (11080A) (100 A above the operational field)

172 training quenches ~600 secondary quenches Only 1 quadrupole quench

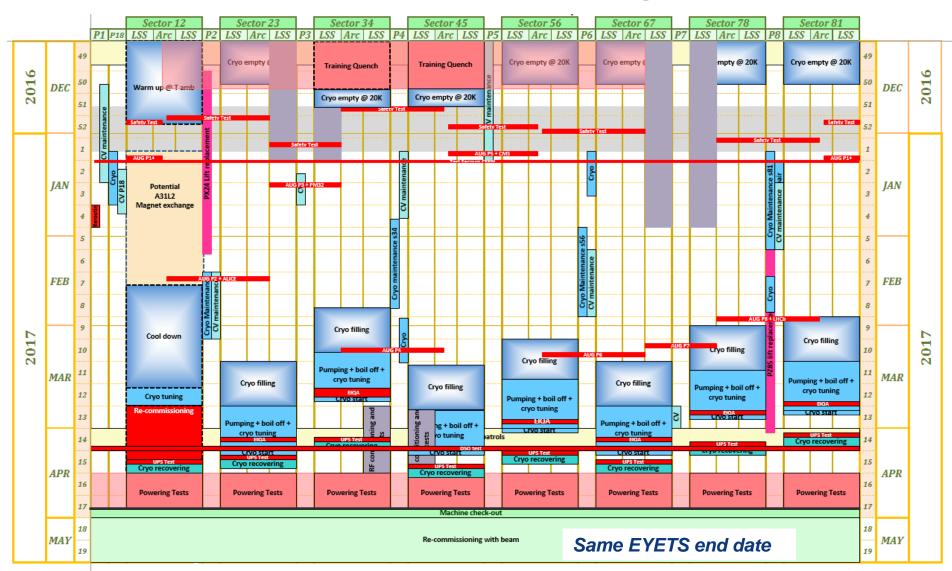
Cryogenics recovery time: 8 – 10 hours

Sector	# Training q <u>uenc</u> h	Flattop quenches
S12	7	0
S23	17	0
S34	15	1
S45	51	0
S56	18	3
S67	22	1
S78	19	3
S81	29	0
Total	171	8

Large variation in number of training quenches per sector

Circuit	Status	#M Firm	1#M Firm	2#M Firm 3	3#MQ Firm 1	#MQ Firm 2	#MQ Firm 3	#MQ total	#CQ total
RB.A12	11080 A reached	50	95	9	2	1	4	7	7
RB.A23	11080 A reached	56	58	40	0	2	15	17	17
RB.A34	11080 A reached	44	81	29	1	7	8	16	16
RB.A45	11080 A reached	48	44	62	-	3	48	51	49
RB.A56	11080 A reached	28	42	84	0	0	18	18	17
RB.A67	11080 A reached	57	36	61	0	1	21	22	21
RB.A78	11080 A reached	53	40	61	2	10	7	19	19
RB.A81	11080 A reached	64	24	66	0	3	26	29	26

LHC: new schedule approved on 31st August



LHC Proton Run
2016 is reduced by
one week: one
week investment
for energy increase

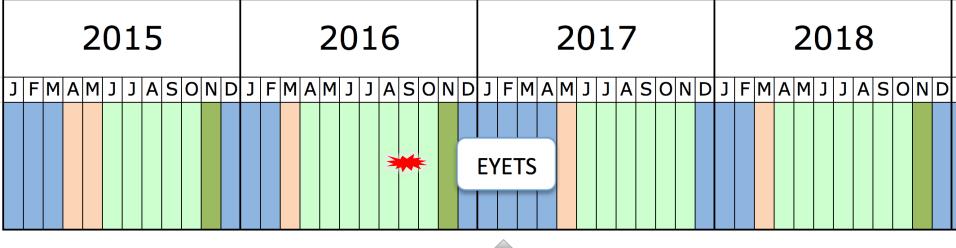
The restart date in 2017 is unchanged

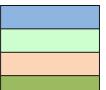
Training of 2 sectors towards 7 TeV (max 2 weeks)

LHC EYETS approved on 31st August 2016

LHC: Incoming 2016

July				Aug Sep									
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	4	11	18	25	1	8	15	22	29	5	12	19	26
Tu								MD 2				= 2.5 km taking	
We											TS2	eta* =	
Th				MD 1						Jeune G		Ā	
Fr								beta* 2.5 km dev.					
Sa										MD 3			
Su				beta* 2.5 km dev.						5			


	Oct			Nov End of LHC run [06:00] Dec									
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	3	10	17	24	31	7	14	21	28	Ψ ,	12	19	26
Tu	MD 4					lons					ded year en	d	
We					TS3	setup				tec	hnical stop		
Th							lon	run				Lab closed	
Fr				MD 5			(p-	Pb)					
Sa													
Su									Pb MD			Xmas	New Year

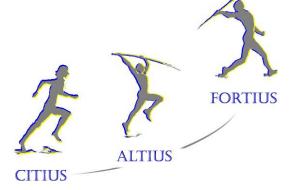

- Beta* 2.5 km physics (4 days and long preparation)
- 29 days of proton physics left
- Proton-lead run at √s_{NN} of 5 and 8 TeV
- 2 weeks dipole training before Christmas

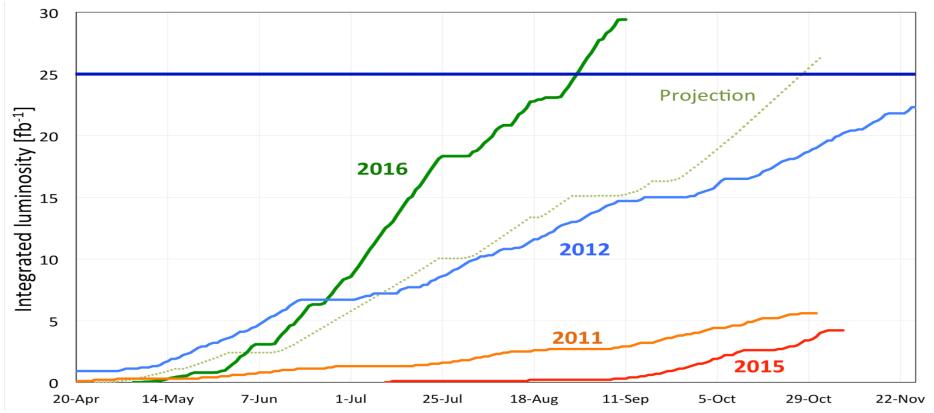
Run 2

Ion runs in 2016 (p-Pb) and 2018 (Pb-Pb)

Shutdown/Technical stop Protons physics Commissioning Ions

Push 2 sectors towards 7 TeV Extended Year End Technical Stop – 20 weeks General maintenance: LHC and injectors and CMS pixel upgrade;


- Peak luminosity to ~1.7 10³⁴ (limited by inner triplets)
- ~ 40-45 fb⁻¹/year in 2017 and 2018 (goals will be fixed at Chamonix 2017)
- Prepare for HL-LHC and post-LS2 LIU era
- Prepare for 7 TeV operation



Conclusion: 2016 goals

Peak luminosity > $1.2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Over 25 fb-1 in both ATLAS and CMS

<u>SATISFACTION</u>

Peak luminosity > 1.2 x 10³⁴ cm⁻²s⁻¹ Integrated luminosity ~ 30 fb⁻¹

SATISFACTION

Peak luminosity > 1.2 x 10³⁴ cm⁻²s⁻¹ Integrated luminosity ~ 30 fb⁻¹

TICAN'T GET NO TO SATISFACTION

To reduce the crossing angle (test after TS2)

To keep the emittance growth through the cycle

To increase the number of bunches (2748, 288 per train) and bunch intensity

Reduction of β^* (ATS optics could be an option)

Optimisation of the integrated luminosity (availability)

Prepare towards 14 TeV operation

• • •

The European Strategy for Particle Physics Update 2013

Europe's top priority should be the **exploitation of the full potential of the LHC**, including the high-luminosity upgrade of the machine and detectors with a view to collecting **ten times more data than in the initial design, by around 2030**. This upgrade programme will also provide further exciting opportunities for the study of flavour physics and the quark-gluon plasma.

HL-LHC from a study to a PROJECT $300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1}$

including LHC injectors upgrade LIU (Linac 4, Booster 2GeV, PS and SPS upgrade)

Goal of High Luminosity LHC (HL-LHC):

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

Prepare machine for operation beyond 2025 and up to 2035-37

Devise beam parameters and operation scenarios for:

#enabling a total integrated luminosity of 3000 fb⁻¹

#implying an integrated luminosity of 250-300 fb⁻¹ per year,

#design for $\mu \sim 140$ (~ 200) (\rightarrow peak luminosity of 5 (7) 10^{34} cm⁻² s⁻¹)

#design equipment for 'ultimate' performance of **7.5 10³⁴ cm⁻² s⁻¹** and **4000 fb⁻¹**

=> Ten times the luminosity reach of first 10 years of LHC operation

LHC Upgrade Goals: Performance optimization

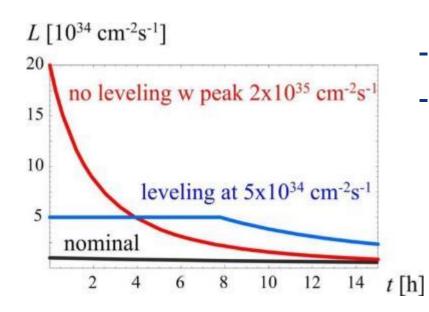
Luminosity recipe:

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, s_s)$$

→1) maximize bunch intensities

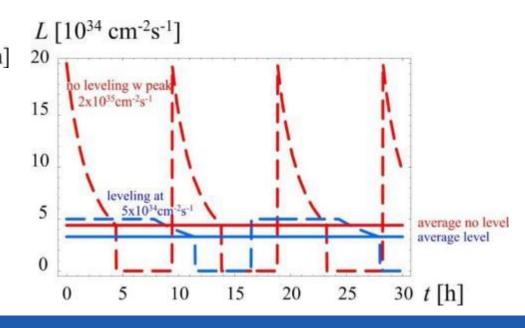
→ Injector complex

→2) minimize the beam emittance

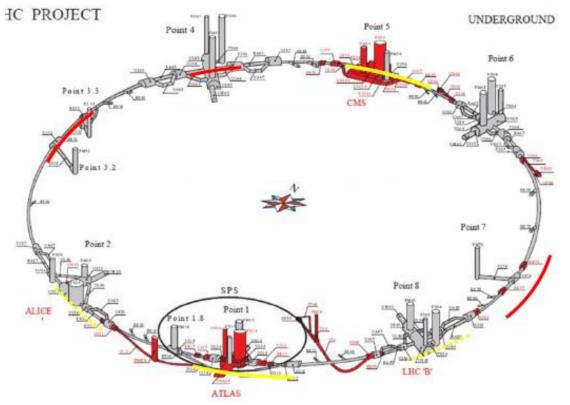

- LIU 😂 IBS
- →3) minimize beam size (constant beam power); → triplet aperture
- \rightarrow 4) maximize number of bunches (beam power); \rightarrow 25ns
- →5) compensate for 'F';

→ Crab Cavities

→6) Improve machine 'Efficiency'

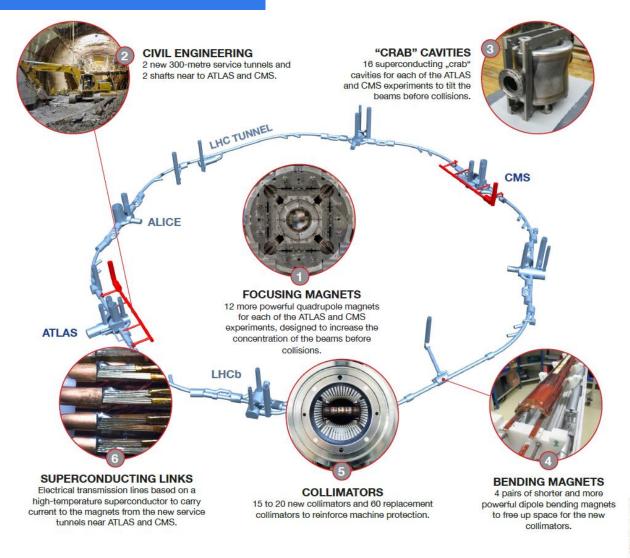

→ minimize number of unscheduled beam aborts

Luminosity Levelling, a key to success



- High peak luminosity
- Minimize pile-up in experiments and provide "constant" luminosity

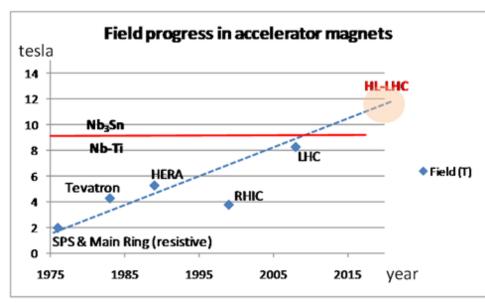
- Obtain about 3 4 fb⁻¹/day (40% stable beams)
- About 250 to 300 fb⁻¹/year

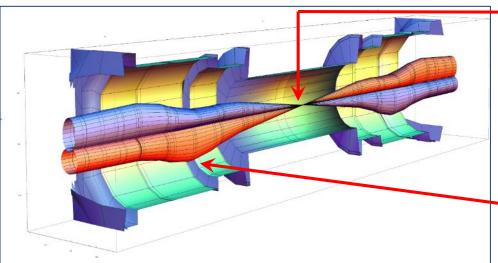

The HL-LHC Project

- New IR-quads Nb₃Sn (inner triplets)
- New 11 T Nb₃Sn (short) dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection
- •

Major intervention on more than 1.2 km of the LHC

Project Landmarks

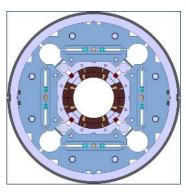

19th September 2016 - Split, Croatia

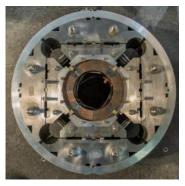

Squeezing the beams: High Field SC Magnets

Quads for the inner triplet
Decision 2012 for low-β quads
Aperture Ø 150 mm – 140 T/m
(B_{peak} ≈12.3 T)
operational field, designed for 13.5 T

=> Nb₃Sn technology

(LHC: 8 T, 70 mm)




	β _{triplet}	Sigma triplet	β*	Sigma*
Nominal	~4.5 km	1.5 mm	55 cm	17 um
HL-LHC	~20 km	2.6 mm	15 cm	7 um

First short model magnet MQXFS1 (1.5 m) Inner triplet Quad final cross section (\emptyset =150 mm)

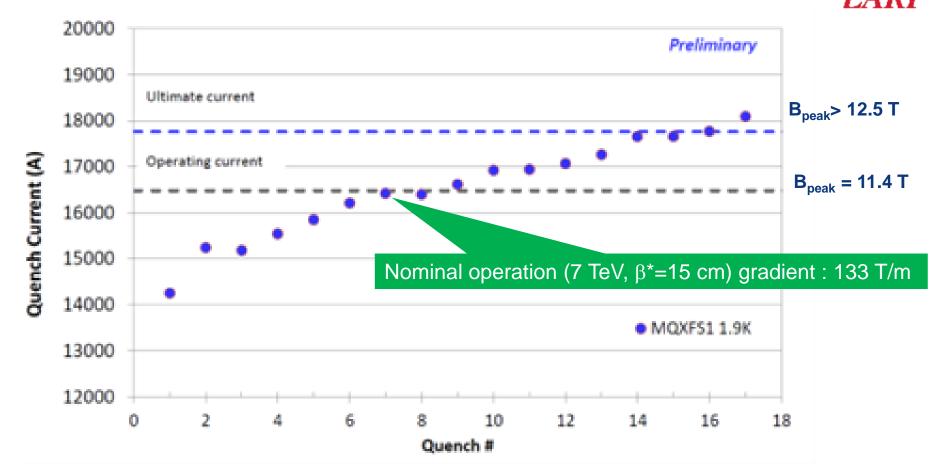
CERN - US LARP collaboration

Design and Nb₃Sn coils by CERN and

LARP together (50%-50%)

Full collider characteristics.

Final length will be 3 to 5 times more



First short model magnet MQXFS1 (1.5 m) Result of the first energization @ FNAL

Next: thermal cycle and memory test (and more...)

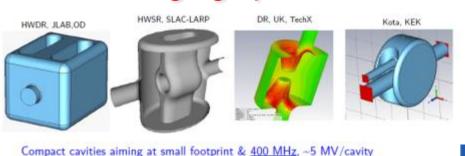
HL-LHC Upgrade Ingredients: Crab Cavities

 $F(p^*)$

0.9 0.8

0.7 0.6

0.5 0.4 0.3


0.2 0.1

Geametrictleuminosity

- Reduction Factor: geometrical reduction factor
- Independent for each IP

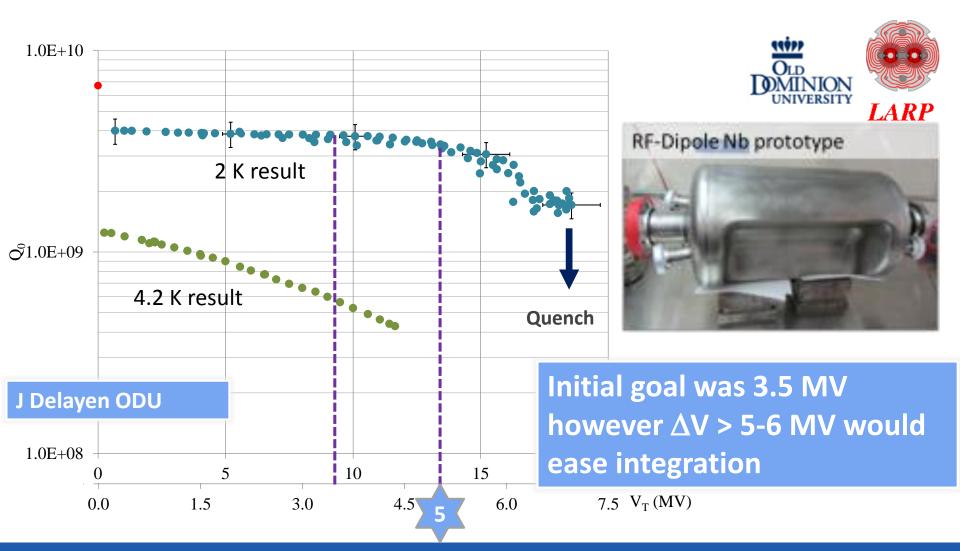
$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

- Noise from cavities to beam?!?
- Challenging space constraints

Crab Cavity Crab Cavity Cavity Crab Cavity

0.4

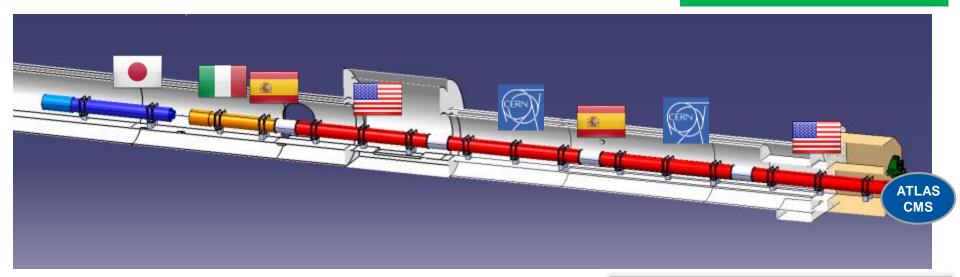
0.2

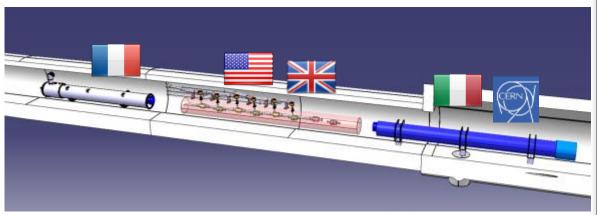

effective cross section

0.8

0.6

Excellent first results: e.g. RF dipole > 5 MV


1/4 w and 4-rods also tested (1.5 MV)



In-kind contributions and collaborations for design, prototypes, production and tests

Discussions are ongoing with other countries, e.g Canada,...

Q1-Q3 : R&D, Design, Prototypes and in-kind **USA**

D1: R&D, Design, Prototypes

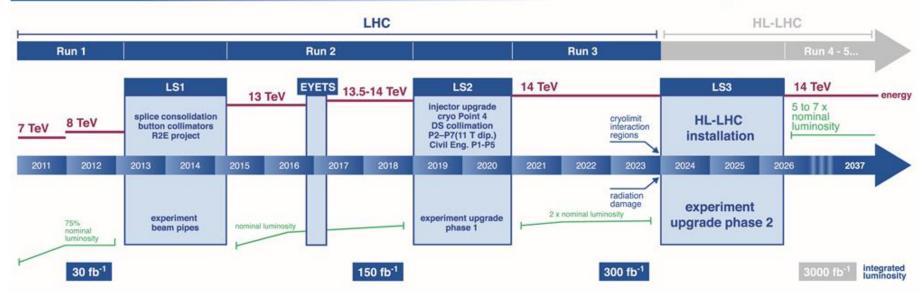
and in-kind JP

MCBX : Design and Prototype ES

HO Correctors: Design and

Prototypes IT

Q4 : Design and Prototype FR


CC: R&D, Design and in-kind USA

CC: R&D and Design UK

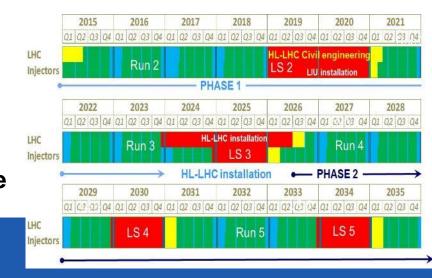
LHC / HL-LHC Plan

HL-LHC Plan

Conclusions

LHC is operational at 13 TeV c.m. and with 25ns beams

2016 : production mode at 13 TeV ; > 30 fb⁻¹


- 25 ns operation
- β^* = 40 cm in ATLAS and CMS; 3m in LHCb; 10m in ALICE
- Going towards combining ramp & squeeze
- Rapid intensity ramp up in spite several technical problems

Nominal design luminosity 1x10³⁴ cm⁻² s⁻¹ reached and exceeded (1.2 10³⁴)

- Optimisation of the integrated luminosity (availability ~ 65 %)

RUN 2 goal : > 100 fb⁻¹ and to reach 300 fb⁻¹ at the end of RUN 3

LHC Injector Upgrade (LIU => LS2) and High Luminosity LHC (HL-LHC => LS3) well defined and now in construction phase

Hvala na pažnji

