

Associated top-quark pair and Higgs boson production at CMS with 13 TeV data

LHC Day 2016 Large Hadron Collider Physics

Christian Contreras (DESY) on behalf of the CMS collaboration

Sept. 19, 2016

Outline

- Introduction & challenges
- ttH production & decay modes
- Recap Run I & Moriond combined results
- Analysis strategy & results at 13 TeV
 - ttH(bb)
 - $ttH(\gamma\gamma)$
 - ttH(multileptons)
- Summary

Introduction

Post-discovery of Higgs boson the focus now on it's full characterization

• Why associated ttH production?

- ttH offers direct measure of top Yukawa coupling & test SM consistency
- Add sensitivity to other Higgs coupling measurements
- Possibility to exploit several Higgs decay modes
- Used in many Beyond Standard Model physics searches

Challenges

Experimental challenges

- Small signal cross section
- Overwhelming background
- Cross section increased with center-of-mass energy
 - \sim 3.9 increase in cross section for 13 TeV

(sensitivity approaching Run 1)

\sqrt{s}	$\sigma_{t\bar{t}H}$ at NLO (m _H = 125 GeV)
$7 { m TeV}$	89 fb
$8 { m TeV}$	133 fb
$13 { m TeV}$	507 fb

- Sensitive to potential new physics contributions
- Dominant background from tt+XX
 - Similar increase in cross section
- Luminosity of 13 TeV data ~2.3-12.9 fb⁻¹
 - ≈ 2.5 more statistics than 8 TeV

ttH signature

- ttH final states combine top & Higgs decay signatures
 - tt final state topology depends on W boson decay: lepton +jets, dilepton, all-jets
 - **ttH(bb):** lepton + jets, dileptons
 - **ttH(yy):** lepton+jets, dileptons, all-jets
 - ttH(multileptons): lepton+jets, dileptons
 - Leptonic decays of Higgs boson \rightarrow WW*, ZZ*, and $\tau\tau$

Run I ttH results at 7 and 8 TeV (HIG-15-002)

- Recap knowledge from Run I results
 - combination of all Higgs analysis channels in ATLAS and CMS
- μ_{ttH} dominated by ttH($\gamma\gamma$), ttH(multileptons), and ttH(bb)

Moriond 2016 combined results

- Combined fit of 3 statistically independent analysis channels:
 - ttH(bb) (HIG-16-004), $ttH(\gamma\gamma)$ (HIG-15-005), and ttH(multileptons) (HIG-15-008)

ttH(bb) (HIG-16-004)

- Large H → bb Branching fraction
- Dominant background: tt+jets
 - Irreducible contribution: tt+bb (theoretically challenging)
- Many jets with similar kinematics with limited mass resolution for H → bb
- Analysis strategy: obtain good signal separation & constrain background
 - Event categories: 11 (5) lepton+jets (dilepton)
 - Lepton triggers and offline event selection

Lepton+jets

- exactly 1 lepton
- At least 4 jets
- At least 2 b-tagged jets
 - Leptons + jets: high statistics
 - **Dilepton:** minimal non-tt background, and minimal jet combinatorics
- Classify events based on jet, b-tag multiplicities and boosted jets (leptons+jets), a total of 13 sub-categories

Christian Contreras

Dileptons

- 2 opposite sign leptons
- At least 3 jets
- At least 2 b-tagged jets

ttH(bb) signal seperation

CMS Preliminary

BDT > 0.1

1 lepton, ≥6 jets, ≥4 b-tags

Events

Number of

22

20

18

1.5

2.7 fb⁻¹ (13 TeV)

ttH (x15)

Single Top

DESY

Tt+cc

ti+2b

Tot. unc

Data

1+11

t+b

II+bb

IV⇒iets

Diboson

- **Dilepton:** use Boosted Decision Tree (BDT)
- Lepton+jets: use Matrix Element Method (MEM)
 - tt+bb as background hypothesis, permuting over all b-quark association
 - MEM as input to BDT modeling ullet
 - 2Dim MEM+BDT analysis

ttH(bb) results

- Simultaneous maximum likelihood fit of discriminant output across all event categories
- Observe no significant excess
 - set upper limit on $\mu = \sigma / \sigma_{SM}$
- Systematic dominated

Upper limit at 95% CL

Channel	Best-fit μ	Observed UL	Expected UL
Lepton+jets	$-0.4^{+2.1}_{-2.1}$	4.0	$4.1^{+1.8}_{-1.2}$
Dilepton	$-4.7^{+3.7}_{-3.8}$	5.2	$7.7^{+3.6}_{-2.3}$
Combined	$-2.0\substack{+1.8\\-1.8}$	2.6	$3.6^{+1.6}_{-1.1}$

Combined best-fit
$$\hat{\mu}_{\text{observed}} = -2.0$$

1.7
$$\sigma$$
 below SM expectation

ttH(YY) (HIG-16-020)

ttH(yy) part of the inclusive H→yy analysis

- Dilepton selection to separate signal from background (BDT modeling)
- Event categorization according to production mode and $m_{\gamma\gamma}$ resolution
- Event tagging produced for VBF, and ttH processes

Leptonic

- Dilepton triggers & offline selection
- At least 1 lepton
- At least 2 jets
- At least 1 b-tagged
- Relies on diphoton
 BDT model cut

Hadronic

- Dilepton triggers & offline selection
- 0 leptons
- At least 5 jets
- At least 1 b-tagged
- Relies on diphoton BDT model cut

ttH(yy) results

- For background, smooth fit functions (treated in a likelihood fit)
 - Model fit validated in control regions by inverting photon ID + loosened event selection
- Event interpretation as for inclusive $H \rightarrow \gamma \gamma$ (search for resonance $m_{\gamma\gamma}$)
- Selected ttH($\gamma\gamma$) process allows high-purity selection
 - Measurement statistically limited

DESY

ttH(multileptons) (HIG-16-022)

Targets at selecting events where H \rightarrow WW^{*}, ZZ^{*}, and $\tau\tau$

Christian Contreras

ttH(multileptons) results

Christian Contreras

DESY

Summary

- Top-Higgs Yukawa coupling directly accessible through associated ttH production
 - Important for understanding loop contributions
 - Results based on improved analysis techniques for 13 TeV
- Best-fit for 3 statistically independent analysis channels with 1 13 TeV data

st

- Overall in agreement with SM expectations
- The combined μ of 2.3 corresponds to an observed (expected) significance of 4.4 (2.0) σ over the null hypothesis (based on Moriond results)
- Similar sensitivity as that of 8 TeV

-1

- Expected luminosity of full 2016 data \approx 30 fb
 - Many more results to come!
 - With every new analysis, our understanding of the Higgs boson and the SM continues to grow
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>

Reference

- https://cds.cern.ch/record/2053103/files/HIG-15-002-pas.pdf
- https://cds.cern.ch/record/2139578/files/HIG-16-004-pas.pdf
- https://cds.cern.ch/record/2205275/files/HIG-16-020-pas.pdf
- <u>https://cds.cern.ch/record/2205282/files/HIG-16-022-pas.pdf</u>
- <u>https://cms-results.web.cern.ch/cms-results/public-results/</u> preliminary-results/HIG-15-008/index.html
- <u>https://cms-results.web.cern.ch/cms-results/public-results/</u> preliminary-results/HIG-15-005/index.html
- <u>http://www.nature.com/nature/journal/v429/n6992/fig_tab/</u> <u>nature02589_F2.html</u>
- <u>http://www.quantumdiaries.org/tag/cms/page/4/</u>

Introduction

Post-discovery of Higgs boson the focus now on it's full characterization

Why associated ttH production?

• ttH offers direct measure of top Yukawa coupling & test SM consistency

00000000

- Possibility to exploit several Higgs decay modes
- Add sensitivity to other Higgs coupling measurements
- Used in many Beyond Standard Model physics searches
- **Experimental challenges**
 - Small signal cross section and overwhelming background
- $_g$ QQQQQQQQ Cross section increased with center-of-mass energy
 - ~ 3.9 increase in cross section for 13 TeV (sensitivity approaching Run 1)
 - Sensitive to potential new physics contributions
 - Dominant background from tt+XX
 - Similar increase in cross section
- Luminosity of 13 TeV data ~2.3-12.9 fb⁻¹ (\approx 2.5 more statistics than 8 TeV)

