Heavy Higgs Searches in Diboson Final States*

Zhiqing Zhang on behalf of the ATLAS Collaboration

Introduction

Results

Summary & perspectives

* Higgs BSM searches in other final states covered in Anna Kaczmarska's talk

LHC Days 2016, Split, Sept. 19-24

Introduction

- Heavy Higgs bosons predicted in many BSM models
- Two examples are:
 - 1. Two Higgs Doublet Model (2HDM): h, H, A, H⁺, H⁻
 - 2. EW singlet model: h, H
- Searches performed in all diboson decay channels in fairly model independent ways:
 - Narrow Width Approximation (NWA) 4 MeV, width << detector resolution</p>
 - Large Width Assumption (LWA) with width up to 15% of the mass
 - Production modes:
 gluon-gluon fusion (ggF) and
 Vector boson fusion (VBF)

Using latest 13TeV data sets of 2015 + 2016

with sensitivity often exceeding those published with 7/8TeV data and also extending to higher mass range

Overview of Diboson Modes & Mass Range

Channel I	Lumi (fb ⁻¹)	Mass range	Ref
ZZ→4l NWA	14.8		ATLAS-CONF-2016-079
LWA	14.8		ATLAS-CONF-2016-079
ZZ→llvv NWA	13.3		ATLAS-CONF-2016-056
ZZ→llqq NWA	13.2		ATLAS-CONF-2016-082
ZZ→vvqq NWA	13.2		ATLAS-CONF-2016-082
WW→lvlv NWA	13.2		ATLAS-CONF-2016-074
LWA	13.2		ATLAS-CONF-2016-074
WW→lvqq NWA	13.2		ATLAS-CONF-2016-062
Zγ→IIγNWA	13.3		ATLAS-CONF-2016-044
Zγ→qqγ NWA	3.2		<u>arXiv:1607.06363</u>
	10^2	$\begin{array}{c} 200 \\ m_{\rm H} [{\rm GeV}] \end{array}^3 \end{array}$	3000

yy mode covered in Yee Chinn Yap's talk

LHC Days 2016, Split, Sept. 19-24

Sensitivity Comparison in Different Modes

Searches for heavy diboson resonances in pp collisions at $\int s = 13$ TeV with the ATLAS detector (arXiv:1606.04833)

- Comparison shown only for hadronic and semi-hadronic final states (see also slide 16)
- Decay modes have no event overlap
- 10^{-3} Scalar→VV (lvqq + llqq + vvqq + qqqq) □ All decay modes 1000 1500 2000 500 except for qqqq updated here with more data from 2016

General Search Strategy

- Optimised event selection for a given heavy Higgs boson signal
- Data-driven background estimation/control for dominant backgrounds whenever possible
- Statistic analysis based on either full reconstructed mass m_H or transverse mass m_T distributions from signal (and control) regions
- □ Hadronic Z/W decays reconstructed with

resolved small-R $(\Delta R=0.4)$ jet at low mass

merged large-R (∆R=1) jet at high mass

Use energy correlation ratio $D_2^{(\beta=1)}$ to infer twoprong substructure

```
(<u>ATL-PHYS-PUB-2015-033</u>)
```


Decay Modes with Fully Reconstructed Leptons

- ZZ→4I (4e, 2e2µ, 2µ2e, 4µ),
 m4I (apply Z mass constraints)
 ⇒ Excellent mass resolution
- ggF & VBF NWA signal
- □ LWA signal (1%, 5% and 10% m_H)
- ↓ 4 signal categories:
 − VBF: m_{jj}>400GeV, |∆n_{jj}|>3.3
 − otherwise ggF (4e, 2e2µ,4µ)
- Dominant background: non-resonant ZZ*

Decay Modes with Fully Reconstructed Leptons

LHC Days 2016, Split, Sept. 19-24

Leptonic Decay Modes with Neutrinos

LHC Days 2016, Split, Sept. 19-24

Leptonic Decay Modes with Neutrinos

LHC Days 2016, Split, Sept. 19-24

Semi-Hadronic Decay Modes

ZZ→Ilqq, vvqq, WW→Ivqq

- > llqq: resolved and merged jets
- > vvqq, lvqq: merged jet only
- resolved jet analysis subdivided into b-tagged and untagged categories
- merged jet analysis has two categories:
 1) High-purity: two-prong substructure
 2) Low-purity: otherwise
- > Ilqq VBF: m_{jj} >600GeV, $|\Delta n_{jj}|$ >3.1

LHC Days 2016, Split, Sept. 19-24

Semi-Hadronic Decay Modes

ZZ→Ilqq, vvqq, WW→lvqq

- > Ilqq: resolved and merged jets
- > vvqq, lvqq: merged jet only
- resolved jet analysis subdivided into b-tagged and untagged categories
- merged jet analysis has two categories:
 1) High-purity (HP): two-prong substructure
 2) Low-purity: otherwise
- > llqq VBF: m_{jj}>600GeV, |∆n_{jj}|>3.1

ET^{miss}=458GeV, m_{IvJ}=1.56TeV

Zhiqing Zhang, LAL, Orsay

LHC Days 2016, Split, Sept. 19-24

Semi-Hadronic Decay Modes (95% CL Upper Limits)

LHC Days 2016, Split, Sept. 19-24

Zhiqing Zhang, LAL, Orsay

Decay Modes with Photon (γ)

 $\Box Z\gamma \rightarrow II\gamma (13.3 \text{ fb}^{-1}), qq\gamma (\text{published } 3.2 \text{ fb}^{-1})$

qq being a large-R (boosted) jet

Dominant backgrounds:

llγ: non-resonant Z+γ (90%) + Z+jets (10%)

qqy: y+jets

Modeled with $f_{bkg}(m_{Z\gamma}) = \mathcal{N}(1-x^k)^{p_1+\xi p_2} x^{p_2}$

$$\begin{aligned} x &= m_{Z\gamma} / \sqrt{s} \\ k &= 1/3, \ \xi = 0 \quad \text{for } ll\gamma \\ k &= 1, \ \xi \sim 10 \quad \text{for } qq\gamma \end{aligned}$$

LHC Days 2016, Split, Sept. 19-24

Decay Modes with Photon (γ)

□ 95% CL upper limits on $\sigma \times B(H \rightarrow Z\gamma)$

Ieptonic (hadronic) Z decay channel has better sensitivity at low (high) mass

LHC Days 2016, Split, Sept. 19-24

Summary & Perspectives

□ Heavy Higgs boson has been searched for using up to 14.8fb⁻¹ @ 13TeV

 > in many diboson decay modes fully leptonic (ZZ→4I) including neutrinos (ZZ→IIvv, WW→Ivlv) semi-hadronic (ZZ→IIqq, vvqq, WW→Ivqq) with γ (ZZ→IIγ, qqγ) fully hadronic (ZZ→qqqq)

No significant deviation found

 Stringent upper limits set on its production in ggF & VBF production modes with NWA & LWA lineshapes over wide range

More data have been and are being taken

⇒ good perspective for discovery or more stringent constraints.

Search for an additional, heavy Higgs boson in the $H \rightarrow ZZ$ decay channel at $\sqrt{s} = 8$ TeV in pp collision data with the ATLAS detector (<u>published in EPJC</u>)

Complementary sensitivity with IIII being the best at low mass

Backup

Channel	Lumi (fb ⁻¹)	Dominant syst. unc.	Ref
ZZ→4l NWA	14.8	ggF: lumi, VBF: jet syst	ATLAS-CONF-2016-079
LWA	14.8		ATLAS-CONF-2016-079
ZZ→IIvv NWA	13.3	Z+jets	ATLAS-CONF-2016-056
ZZ→llqq NWA	13.2	Large-R jet E scale/resolution	ATLAS-CONF-2016-082
ZZ→vvqq NWA	13.2	W/Z + jets modelling	ATLAS-CONF-2016-082
WW→lvlv NWA	13.2	top modelling	ATLAS-CONF-2016-074
LWA	13.2	top modelling	ATLAS-CONF-2016-074
WW→lvqq NWA	A 13.2	Large-R jet, shape of W+jets,ttbar	ATLAS-CONF-2016-062
Zγ→IIγNWA	13.3	Stat unc.	ATLAS-CONF-2016-044
Zγ→qqγ NWA	3.2	Jet mass/energy resolution	<u>arXiv:1607.06363</u>