Search for new physics through γγ channel in ATLAS

Yee Chinn Yap (LPNHE, Paris), on behalf of the ATLAS Collaboration

LHC Days in Split, 20th September 2016

Higgs discovery

- γγ channel played a significant role in the discovery of 125 GeV Higgs boson in 2012 despite its low branching ratio.
- Excellent mass resolution \rightarrow further discovery • potential.
 - Will present 2 BSM searches using $\gamma\gamma$.

Extensions from $H \rightarrow \gamma \gamma$ search

High mass yy resonance

- Analogous to SM Higgs search but at higher invariant mass.
- Clean signal of two high p_T photon candidates that manifests as local excess in the diphoton mass spectrum over smooth background.
- Predicted by extension of Higgs sector as well as extra dimensions.
- 2015+partial 2016 dataset (15.4 fb⁻¹): <u>ATLAS-CONF-2016-059</u>

- h→γγ in association with missing transverse energy (E_T^{miss})
- Similar strategy to SM Higgs search but with requirement on E_T^{miss}.
- Clean signal as a bump around 125 GeV over smooth background, on top of SM Higgs.
- Dark matter (DM): Massive vector mediator emitting a Higgs boson and decaying into a pair of DM candidates. Heavy scalar decays into a Higgs and a pair or DM candidates.
- 2015+partial 2016 dataset (13.3 fb⁻¹): <u>ATLAS-CONF-2016-087</u>

High mass $\gamma\gamma$: Published results on 2015 data

broad excess around 750 GeV in both selections.

High mass $\gamma\gamma$: Published results on 2015 data

- Local significance of **3.8-3.9σ** around 750 GeV with best fit width of ~6% (45 GeV).
- Taking into account look elsewhere effect in the search region, global significance is 2.1σ.

High mass $\gamma\gamma$: Benchmark models and selections

- Benchmark models:
 - Scalar singlet (spin-0)
 - Extension from $H \rightarrow \gamma \gamma$ analysis.
 - Background modelling using functional form.
 - Cut on $p_T/m_{\gamma\gamma}$.
 - Randall-Sundrum graviton model (spin-2)
 - High invariant mass range (limits up to 5 TeV).
 - Background modelling using MC template.
 - Looser kinematic cuts to maximise acceptance.

	Spin-0	Spin-2	
trigger	2 photons with p _T > 35 (25) GeV passing loose photon identification criteria based on electromagnetic shower shapes.		
рт	p _T ^{γ1} /m _{γγ} >0.4, p _T ^{γ2} /m _{γγ} >0.3	2γ with p _T > 55 GeV	
η	η _γ < 2.37 excluding 1.37< η _γ < 1.52		
isolation	calorimeter and track isolation		
photon identification	tight identification criteria		

High mass yy: Background modelling

- Background composed primarily of QCD γγ direct production (irreducible) and γj, jγ, jj (reducible, from jets misidentified as photons).
- Purity studies show $\gamma\gamma$ fraction to be high: $93^{+3}-8\%$ ($94^{+3}-7\%$) for spin-0 (spin-2) selection.
- Background template built from above components with the measured purity.
- Spin-0:
 - Functional form approach: function fit to data with free parameters.

$$f_{k;d}(x; b, \{a_k\}) = (1 - x^d)^b x^{\sum_{j=0}^k a_j \log(x)^j}$$

 Uncertainties : Spurious signals from S+B fits to background template to estimate potential bias.

Spin-2:

- Template approach: Fit with background template.
- Uncertainties: from MC statistics, theoretical, background shape and composition uncertainty, etc

High mass yy: Signal modelling

Spin-0 analysis

- Scalar singlet model in MG5_aMC@NLO (was using PowHeg heavy Higgs-like model for 2015 results).
- Convolution of the theoretical line shape with detector response.

- Spin-2 analysis
 - RS graviton model generated with Pythia.
 - Convolution of theoretical line-shape with detector response.
 - k/M_{Pl} from 0.01 to 0.3 (narrow to ~13% m_{G*}).

Search for new physics through yy channel in ATLAS 20/

High mass yy: New results

- 2015 data:
 - Reanalysed with improved photon reconstruction algorithms.
 - The local significance of the largest excess in spin-0 selection decreased from 3.9 σ to 3.4 σ .
 - The corresponding best-fit mass and width also changed.
 - m_X: 750 GeV→730 GeV, Γ_X/m_X : 6%→8% (partly due to change in signal model).
 - 2016 data:
 - Impressive performance of the LHC with peak luminosity beyond design.
 - Only spin-0 analysis presented. Extended acceptance of the spin-2 selection is susceptible to pile-up.
 - ATLAS data-taking efficiency > 90%.
 12.2 fb⁻¹ of 2016 data analysed for ICHEP, giving 15.4 fb⁻¹ in total combining 2015+2016.

High mass $\gamma\gamma$: 2.2 TeV $\gamma\gamma$ event

Yee Yap

Search for new physics through $\gamma\gamma$ channel in ATLAS

High mass $\gamma\gamma$: New results with 2015+2016 data

 No significant excess in 2016 data. Compatibility between 2015 and 2016 datasets for signal cross-section at 730 GeV large width is 2.7 σ.

High mass $\gamma\gamma$: New results with 2015+2016 data

- Combined dataset shows no significant excess in the 2D search region.
- Largest deviation is at 1600 GeV (narrow) with local significance of 2.4 σ (<1 σ global).
- In the 700–800 GeV mass range the largest local significance is 2.3 σ for a mass near 710 GeV and a relative width of 10%.

High mass $\gamma\gamma$: Upper limits on fiducial cross-section

· Limits on fiducial cross-sections in order to be more model-independent.

$\gamma\gamma$ + E_T^{miss} : Signal models

- Three theoretical models:
 - Simplified models (recommended by LHC Dark Matter Forum).
 - · Z'_B model

 Z'-2HDM model (DM couples to pseudoscalar)

• Heavy scalar produced in ggF decays into a Higgs boson and two DM candidates. EFT approach. $2m_h < m_H < 2m_{top}$.

$\gamma\gamma$ + E_T^{miss} : Event selection and categorisation

- Event selection follows closely the standard $H \rightarrow \gamma \gamma$ analysis.
- E_{T^{miss}} is calculated wrt to the diphoton vertex including track-based soft term (less sensitive to pile-up).
- Pile-up degrades E_T^{miss} performance. Use E_T^{miss} significance: $S_{E_T^{miss}} = E_T^{miss} / \sqrt{\sum E_T}$
- 4 categories defined:

Category	$S_{E_{\mathrm{T}}^{\mathrm{miss}}} \left[\sqrt{\mathrm{GeV}} \right]$	$p_{\mathrm{T}}^{\gamma\gamma}$ [GeV]]
High $S_{E_{\mathrm{T}}^{\mathrm{miss}}}$, high $p_{\mathrm{T}}^{\gamma\gamma}$	>7	> 90	\blacktriangleright Z' _B and Z'-2HDM models
High $S_{E_{\mathrm{T}}^{\mathrm{miss}}}$, low $p_{\mathrm{T}}^{\gamma\gamma}$	>7	≤ 90	
Intermediate $S_{E_{T}^{miss}}$	>4 and ≤7	> 25	r neavy scalar
Rest	-	> 15	

- In Z'_B and Z'-2HDM models, the Higgs boson recoils against the DM pair, resulting in larger E_T^{miss} and large p_T of the diphoton candidate. \rightarrow use only high- E_T^{miss} -significance-high- $p_T^{\gamma\gamma}$ category.
- In heavy scalar model, E_T^{miss} and $p_T^{\gamma\gamma}$ can span a large range. All 4 categories are used.

$\gamma\gamma + E_T^{miss}$: E_T^{miss} significance, signal and background modelling

 Data and MC comparison of E_T^{miss} significance shows good agreement within uncertainties.

- Double-sided Crystal Ball function is used to model the signal shape as well as background from SM Higgs in each category.
- Non-resonant background modelling is data-driven using functional form with similar spurious signals procedure.
 - Simple exponential for high- E_T^{miss} -significance category.
 - Intermediate and rest categories use exponential of 2nd order polynomial.
- Fit performed in the range $105 < m_{\gamma\gamma} < 160$ GeV.

•

 $\gamma\gamma$ + E_T^{miss} : Results

yy mass fit over 4 categories

 $\gamma\gamma + E_T^{miss}$: Limits

Yee Yap

95% CL Limit on σ (pp→ H) × BR [fb]

Search for new physics through yy channel in ATLAS

20/09/2016 20

Limits vs Z' and A⁰ mass in Z'-2HDM model

Summary

- New physics search in high mass $\gamma\gamma$ and $h \rightarrow \gamma\gamma + E_T^{miss}$ reported.
 - No significant excess observed in combined 2015+2016 dataset.
 - 3.9σ 750GeV diphoton excess in 2015 data decreases to 3.4σ after reanalysis.
 - Excess not seen in 2016 data. 2015 2016 compatibility at level of 2.7σ. Combined local significance is 2.3σ (<1σ global).
- $h \rightarrow \gamma \gamma + E_T^{miss}$ results interpreted in the context of 3 theoretical models.
- 2016 data taking going well. Stay tuned for more!

Back-up

High mass $\gamma\gamma$: Purity and signal shape

Search for new physics through γγ channel in ATLAS 20/09/2016

High mass yy: 1D p0

High mass yy: 1D limits

High mass $\gamma\gamma$: 1D observed limits comparison

High mass yy: 2D limits

Yee Yap

Search for new physics through yy channel in ATLAS

20/09/2016 27

High mass $\gamma\gamma$: Systematics

Uncertainty	Spin-2 search	Spin-0 search	
Signal mass resolution	$+(30-60)_{0\%}$	$+(40-60)_{07}$	
(mass dependent)	$-(20-40)^{70}$	$-(30-45)^{70}$	
Signal photon identification	$\pm (2-3)\%$		
(mass dependent)			
Signal photon isolation	$\pm (2-1)\%$	$\pm (4-1)\%$	
(mass dependent)			
Signal production process	N/A	$\pm (3-6)\%$	
		depending on Γ	
Trigger efficiency	土(0.6%	
Luminosity	± 5	5.0%	

Trigger	HLT_g35_loose_g25_loose		$ \eta_{\gamma} < 2.7$
Photons	$ \eta_{\gamma} < 2.37$ excluding 1.37< $ \eta_{\gamma} < 1.52$		Medium ID, isolation
	Tight photon ID, calorimeter and track isolation	Muons	pT>10 GeV
	$p_T^{\gamma 1}$ >35 GeV, $p_T^{\gamma 1}$ >25GeV $p_T^{\gamma 1}/m_{\gamma \gamma}$ >0.4, $p_T^{\gamma 2}/m_{\gamma \gamma}$ >0.3		d₀ /σ _{d0} <3, z₀ sinθ<0.5mm
Electrons	$ \eta_{\gamma} < 2.47$ excluding 1.37< $ \eta_{\gamma} < 1.52$		$ \eta_{\gamma} < 4.4$
	Medium LH ID, isolation	Jets	pT>25 GeV
	pT>10 GeV		JVT cuts
	$ d_0 /\sigma_{d0} < 5$, $ z_0 \sin\theta < 0.5 mm$	ET miss	Recalculated wrt the diphoton vertex. Using track-based soft-terms.

Search for new physics through $\gamma\gamma$ channel in ATLAS 20/09/2016 29

γγ+MET: Signal and background MC

- Madgraph at LO using NNPDF3.0LO pdf.
- Z'_B model: DM particle of mass 1 GeV, coupling constant and missing parameter following recommendations: $g_{\chi}=1.0$, $g_q=1/3$, $g_{hZ'Z'}=m_{Z'}$, sin $\theta=0.3$.
- Z'-2HDM model: m_{χ} =100 GeV, tan β =1.0, $g_{Z'}$ =0.8.
- Heavy scalar: 260<m_H<350 GeV, m_{χ} =50, 60 GeV.

Process	Generators used	PDF set (ME, PS)	Tune
ggF, $h \to \gamma \gamma$	Powheg $[20]$ + Pythia 8	CT10 [21], CTEQ6L1 [22]	AZNLO [23]
VBF, $h \to \gamma \gamma$	Powheg + Pythia 8	CT10, CTEQ6L1	AZNLO
$Wh, h \rightarrow \gamma \gamma$	Pythia 8	NNPDF2.3LO	A14
$Zh, h \rightarrow \gamma\gamma$	Pythia 8	NNPDF2.3LO	A14
$t\bar{t}h, h \to \gamma\gamma$	Powheg + Pythia 8	NNPDF3.0LO, NNPDF2.3LO	A14
$b\overline{b}h, h \to \gamma\gamma$	Powheg + Pythia 8	NNPDF3.0LO, NNPDF2.3LO	A14
$\gamma\gamma$ + 3 jets	Sherpa [24]	CT10	-
$Z\gamma \rightarrow ll\gamma \ (l = \mu, e, \tau, \text{or} \nu) + \text{up to 3 jets}$	Sherpa	CT10	-
$W\gamma \rightarrow l\nu\gamma \ (l = \mu, e, \text{ or } \tau) + \text{up to 3 jets}$	Sherpa	CT10	-
$Z\gamma\gamma \rightarrow ll\gamma\gamma \ (l = \mu , e, \tau, \text{ or } \nu) + \text{up to } 2 \text{ jets}$	Sherpa	CT10	-
$W\gamma\gamma \rightarrow l\nu\gamma\gamma~(l=\mu~,e~{\rm or}~\tau)$ + up to 2 jets	Sherpa	CT10	-

γγ+MET: Additional limit plots

Limit on Z' and A⁰ mass in Z'-2HDM model

γγ+MET: Systematic uncertainties

Source	Maximum uncertainty (%)		
Experimental			
Luminosity	2.9		
Trigger efficiency	0.4		
Vertex selection	3.6 (Intermediate), 20 (High $S_{E_{\infty}^{\text{miss}}}$)		
Photon identification efficiency	2.8		
Photon energy scale	1		
Photon energy resolution	2		
Photon isolation efficiency	4		
$S_{E_{T}^{miss}}$ reconstruction	1 (Rest), 20 (Intermediate and High $S_{E_{T}^{\text{miss}}}$)		
Pile-up reweighting	1.0		
Theoretical			
QCD scale uncertainty of ggF $p_{\rm T}$ spectrum	10 - 20		
Modelling of ggH $E_{\rm T}^{\rm miss}$ spectrum	25		
PDF	9		
MPI	1 (Intermediate), 50 (High $S_{E_{\tau}^{\text{miss}}}$)		
$BR(h \to \gamma \gamma)$	4.9		

γγ+MET: Event yields

Category	Intermediate $S_{E_{\rm T}^{\rm miss}}$	High $S_{E_{\mathrm{T}}^{\mathrm{miss}}},$ High $p_{\mathrm{T}}^{\gamma\gamma}$	$\Big \ \text{High} \ S_{E_{\mathrm{T}}^{\mathrm{miss}}}, \ \text{Low} \ p_{\mathrm{T}}^{\gamma\gamma}$	Rest	
Data	1862	25	98	85551	
	Heavy scal	lar, $m_H = 275 \ GeV, \ m_{\chi} =$	$= 50 \ GeV$		
Yields Selection Eff(%)	$\begin{array}{c c} 54.9 \pm 1.2 \\ 12.32 \pm 0.26 \end{array}$	$ \begin{vmatrix} 5.41 \pm 0.39 \\ 1.21 \pm 0.09 \end{vmatrix} $	$\begin{vmatrix} 6.93 \pm 0.41 \\ 1.55 \pm 0.09 \end{vmatrix}$	$\begin{array}{c c} 102.1{\pm}1.6\\ 22.89{\pm}0.35\end{array}$	
	Heavy scal	lar, $m_H = 275 \ GeV, \ m_{\chi} =$	$= 60 \ GeV$		
Yields Selection Eff(%)	57.8 ± 1.3 9.52 ± 0.21	$\begin{array}{ c c c } & 7.65 \pm 0.45 \\ & 1.26 \pm 0.07 \end{array}$	$\begin{vmatrix} 6.01 \pm 0.40 \\ 0.99 \pm 0.07 \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	Z_B^\prime model, $m_{Z^\prime}=200~GeV,m_\chi=1~GeV$				
Yields Selection Eff(%)	$\begin{array}{c} 7.61 \pm 0.12 \\ 15.5 \pm 2.0 \end{array}$	$\begin{array}{c c} 7.82 \pm 0.12 \\ 16.5 \pm 2.0 \end{array}$	$\begin{vmatrix} 0.97 \pm 0.04 \\ 2.20 \pm 0.30 \end{vmatrix}$	$\begin{array}{c} 8.32 \pm 0.12 \\ 17.5 \pm 3.0 \end{array}$	
$Z'\text{-}2\text{HDM}$ model, $m_{Z'}=1000~GeV,m_{A^0}=200~GeV,\text{and}~m_{\chi}=100~GeV$					
Yields Selection Eff(%)	$\begin{array}{c} 0.05 \pm 0.01 \\ 0.34 \pm 0.03 \end{array}$	$\begin{array}{c} 10.61 \pm 0.11 \\ 63.98 \pm 0.46 \end{array}$	$\begin{vmatrix} 0.002 \pm 0.001 \\ 0.10 \pm 0.10 \end{vmatrix}$	$\begin{array}{c} 0.020 \pm 0.001 \\ 0.10 \pm 0.02 \end{array}$	
Backgrounds					
SM Higgs boson Non-resonant	$\begin{array}{c} 13.21 \pm 0.13 \\ 1845 \pm 48 \end{array}$	$\begin{array}{c} 1.26 \pm 0.02 \\ 24.9 \pm 5.6 \end{array}$	$\begin{array}{c c} 0.51 \pm 0.02 \\ 97 \pm 11 \end{array}$	$527 \pm 0.92 \\ 85210 \pm 330$	