

Search for electroweak SUSY production in multilepton final state at 13 TeV at CMS

Marc Besançon

on behalf of the CMS collaboration

CMS dataset

1

- today's results concern data corresponding to an integrated luminosity of 12.9 fb⁻¹
- LHC is working extremely well → much more data to come

Motivations and context

- coloured susy particles such as gluinos/squarks subjected to strong interaction have not (yet) been discovered
- stringent contraints on their mass (> 1-2 TeV)
- EW SUSY searches become even more relevant (and even more so as lumi increases)

\bullet EW SUSY \rightarrow production of charginos and neutralinos via EW interactions

- search (per se) for SUSY partners of EW gauge and scalar sectors of the SM
- production cross sections are lower than for strongly produced SUSY particles (at same mass
- Run 1 mass constraints on EW gauginos are milder than on gluinos and squarks
- gauginos are expected to be lighter than gluinos and squarks (naturalness, split susy)

Leptonic final states

- *R*-parity conservation is assumed
- gauginos may have significant BRs to W, Z or sleptons which can decay to leptons
- can have hard and isolated leptons in the final state
- small background from SM (channel formerly known at pre-LHC time as the golden channel)

EW SUSY production at CMS

Multiple final states → enhance sensitivity → cover as large a phase space as possible

Baseline selection

SS dilepton channel	trilepton channel	4-lepton channel
2, same charge	3	> 3
25 (20) / 15 (10)	25 (20) / 15 (10) / 10	25 (20) / 15 (10) / 10 /10
0	0, 1, 2	≥0
-	20 (30 / 25)	20
0, 1	≥ 0	≥0
yes	yes	yes
no	yes (in certain category)	no
yes	yes	yes
>60	>50	>0
no third lepton	no fourth lepton	no
	SS dilepton channel 2, same charge 25 (20) / 15 (10)	SS dilepton channel trilepton channel 2, same charge 3 25 (20) / 15 (10) 25 (20) / 15 (10) / 10 0 0, 1, 2 0 0, 1, 2 20 (30 / 25) 20 (30 / 25) 1 20 (30 / 25) 0, 1 ≥ 0 1 20 (30 / 25) 0, 1 ≥ 0 1 20 (30 / 25) 1 9

CMS-PAS-SUS-16-024

categorization

CMS-PAS-SUS-16-024

 $\chi^{\circ}\chi^{\circ} \rightarrow ZZ$

5

 $\chi^{\pm}\chi^{\circ} \rightarrow \widetilde{l} \widetilde{\nu}$

(tau dominated)

 $\chi^{\pm}\chi^{o} \rightarrow \widetilde{l} \widetilde{\nu}$

(tau-enriched)

Background estimation

CMS-PAS-SUS-16-024

• Non-prompt leptons :

- Data driven, tight-to-loose ratio
- probability for a fake lepton (fake ratio) to pass the tight requirements (using dedicated control sample)
- probability then applied to the sidebands of the signal region
- validity checked on MC

• Rare SM processes : from MC

• WZ :

- estimated from MC
- normalisation and shape uncertainties driven by Control Region (CR) in data

• Conversions :

- estimated from MC, validated in data
- Flips (only for SS):
- estimated from MC, validated in data

2 lepton same sign results

CMS-PAS-SUS-16-024

Njets	$M_{\rm T}$ (GeV)	$p_{\mathrm{T}}^{\ell\ell}$ (GeV)	$E_{\rm T}^{\rm miss} < 100 {\rm GeV}$	$100 \mathrm{GeV} \le E_{\mathrm{T}}^{\mathrm{miss}} < 150 \mathrm{GeV}$	$E_{\rm T}^{\rm miss} \ge 150 { m GeV}$
$\begin{array}{c} 0 \\ \hline \\ \geq 10 \end{array}$	~ 100	< 50	SS 01	SS 02	SS 03
	< 100	≥ 50	SS 04	SS 05	SS 06
	≥ 100	< 50 ≥ 50	SS 07	SS 08	SS 09
1 –	< 100	< 50	SS 10	SS 11	SS 12
		≥ 50	SS 13	SS 14	SS 15
	≥ 100	< 50 ≥ 50	SS 16	SS 17	SS 18

Njets	M_{T}	$p_{\mathrm{T}}^{\ell\ell}$	$E_{\rm T}^{\rm miss} < 100 {\rm GeV}$		$100 \leq E_{\mathrm{T}}^{\mathrm{miss}}$	$\sim 150\mathrm{GeV}$	$E_{\rm T}^{\rm miss} \ge 150 { m GeV}$	
,	(GeV)	(GeV)	exp	obs	exp	obs	exp	obs
$\begin{array}{c c} 0 & < 1 \\ \hline \geq 1 \end{array}$	< 100	< 50	310 ± 56	294	15 ± 4	16	1.8 ± 0.6	2
	≤ 100	≥ 50	180 ± 32	191	36 ± 8	33	7.9 ± 1.9	4
	≥ 100	-	32 ± 7	29	15 ± 3	9	15 ± 3	9
1	< 100	< 50	120 ± 25	127	33 ± 7	43	7.2 ± 1.5	14
	< 100	≥ 50	150 ± 29	146	49 ± 10	59	20 ± 4	39
	≥ 100	-	12 ± 2	13	8.7 ± 1.6	8	4.3 ± 1.0	6

2 lepton same sign results

9 10 11 12 13 14 15 16 17 18

Signal region8

8

CMS-PAS-SUS-16-024

0

23456

$0 \qquad \frac{<100}{\geq 100}$	< 100	< 50	SS 01	SS 02	SS 03	-
	< 100	≥ 50	SS 04	SS 05	SS 06	
	≥ 100	$ < 50 \\ \ge 50 $	SS 07	SS 08	SS 09	6
$1 \qquad \qquad < 10 \\ \qquad \qquad \geq 10 $	< 100	< 50	SS 10	SS 11	SS 12	1
	< 100	≥ 50	SS 13	SS 14	SS 15]
	≥ 100	< 50 ≥ 50	SS 16	SS 17	SS 18	

glimpse at 3 lepton channel results

Data in good agreement with SM prediction

Interpretation I

3 lepton signal region interpreted in terms of chargino-neutralino EW production assuming heavy sleptons and decay into W, Z and h bosons

12

- OSSF dilepton search revisiting the on-Z search
- select events with 2 OSSF leptons (pT > 25/20 GeV) and : MET > 150 GeV at least 2 jets

dilepton invariant mass in [81-101] GeV

- binning in number of jets & number of b-jets
- signal region in MET bins (+ATLAS SR)
- background estimation :
 - DY from gamma+jets control region
 - emulation of MT2 variable
- Search strategy :
 - defined by applying tighter cuts on MT2, MET and angular distance between MET and jet to suppress background from ttbar and fake MET

OSSF dilepton search - revisiting the on-Z search

- no evidence for new phenomena
 - put limits on simplified model of chargino-neutralino production assuming heavy sleptons and decay to W/Z bosons
 - observed limits are weaker than expected

Soft OS dilepton searches

 $\tilde{\chi}_2^0$. . .

- motivated by SUSY scenarii with small mass splitting : compressed SUSY
- Iook for final states with :
 - 2 soft OS leptons (ee/mumu) with pT in [5 (3.5) $201 C_{0} V$
 - MET
 - at least 1 jet
- design a dedicated trigger strategy
 - 2 low pT muons with MET
 - increase sensitivity by factor 2

CMS-PAS-SUS-16-025

(5.5) - 50 GeV	$P_1 \qquad \qquad \tilde{\chi}_1^{\pm} \qquad \tilde{\chi}_1^0$
	W C
Variable	SR selection criteria
N_ℓ	$= 2 (ee, \mu\mu, e\mu)$
$Q(\ell_1)Q(\ell_2)$	-1
$p_{\mathrm{T}}(\ell_1), p_{\mathrm{T}}(\ell_2)$	[5, 30] GeV
$p_{\rm T}(\mu_2)$ for high $E_{\rm T}^{\rm miss}$ \tilde{t} -like SR	[3.5, 30] GeV
$ \eta_{\mu} $	< 2.4
$ \eta_{\rm e} $	< 2.5
$d_z(\ell_{1,2})$ & $d_{xy}(\ell_{1,2})$	< 0.01 cm
$Iso_{rel}(\ell_{1,2})$ & $Iso_{abs}(\ell_{1,2})$	$< 0.5 \ \& < 5 \ { m GeV}$
$p_{\rm T}(jet1)$	> 25 GeV
$ \eta (jet1)$	< 2.4
N_b (>25 GeV, CSVL)	= 0
$M(\ell\ell)$	$< 50 \mathrm{GeV}$
$p_{ m T}(\ell\ell)$	$> 3 \mathrm{GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 125 GeV
$E_{\rm T}^{\rm miss}$ (muon subtracted)	> 125 GeV
$E_{\rm T}^{\rm miss}/H_{\rm T}$	[0.6, 1.4]
H_{T}	> 100 GeV
$M(\ell\ell)$	> 4 GeV
$M(\ell\ell)$	veto[9, 10.5] GeV
$M_{ au au}$	veto[0, 160] GeV
$M_{\rm T}(\ell_x, E_{\rm T}^{\rm miss}), x=1,2$	$< 70 \text{GeV}$ (for electroweakino selection or 10^{-1}

 $M_{\rm T}(\ell_x, E_{\rm T}^{\rm miss}), x = 1, 2$

Soft OS dilepton searches

background estimation methods

dileptonic ttbar

- shape from MC
- normalised in dedicated data control region
- extrapolation to signal region from MC

• Drell-Yan

- shape from MC
- normalised in dedicated data control region
- extrapolation to signal region from MC
- VV
 - from MC, validated in data

Non-prompt

- from data, using tight-to-loose method

• Rare SM processes

- from MC

CMS-PAS-SUS-16-025

Soft OS dilepton searches interpretations

selection optimized for EWKinos signatures

signal regions defined by binning in the invariant mass of the dilepton pair

• complementary search

→ probe a much more compressed region of phase

Summary

- extended 8 TeV searches, improved search strategy and increase sensitivity almost everywhere
- many final states probing different regions of phase space
- no evidence for new phenomena
- results interpreted in the context of simplified model of chargino-neutralino
- final states were combined to improve sensitivity
- need more data to probe some regions of the phase space
- LHC is performing extremely well
 more results to come by the end of this year
 - stay tuned !

BACKUP

0 tau

nOSSF=1 on Z, off Z M_T bins

3 lepton final state

3 lepton channel results

1	M _T (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) $M_{\ell\ell} < 75 \mathrm{GeV}$		$75\mathrm{GeV} \le M_{\ell\ell}$	$eV \mid M_{\ell\ell} \ge 1$	105 GeV	
		50 - 100	SR A01		SR A	.13	SR	A25
	100 - 150	SR A02		SR A	.14	SR	A26	
0 - 120		150 - 200	SR A03		SR A	.15	SR	A27
		> 200	SR A04		SR A	.16	SR	A28
		50 - 100	SR A05		SR A	.17	SR	A29
-	120 - 160	100 - 150	SR A06		SR A	.18	SR	A30
-	120 - 100	150 - 200	SR A07		SR A	.19	SR	A31
		> 200	SR A08		SR A	.20	SR	A32
		50 - 100	SR A09		SR A	.21	SR	A33
	> 160	100 - 150	SR A10		SR A	.22	SR	A34
	/ 100	150 - 200	SR A11		SR A	SR	A35	
		> 200	SR A12		SR A	SR	SR A36	
	$M_{\rm T}$ (GeV	$E = E_{\rm T}^{\rm miss}$ (GeV	V) $m_{\ell\ell} < 75$	5 GeV	$~~ ~75 \leq m_{\ell\ell} <$	105 GeV	$m_{\ell\ell} \ge 105$	GeV
		50 - 100	82 ± 11	94	900 ± 100	933	56 ± 8	40
	0 120	100 - 150	20 ± 4	22	170 ± 33	175	14 ± 3	11
	0 - 120	150 - 200	$0 4.4 \pm 1.3$	4	49 ± 12	48	3.7 ± 1.0	6
		> 200	2.3 ± 0.6	2	36 ± 10	35	4.6 ± 1.4	5
		50 - 100	8.0 ± 2.2	. 14	40 ± 16	41	4.7 ± 1.5	4
	120 - 160	100 - 150	2.5 ± 1.0	4	8.0 ± 2.9	7	1.8 ± 0.6	2
	120 - 100	150 - 200	$0 0.7 \pm 0.3$	0	1.2 ± 0.6	3	0.8 ± 0.3	0
		> 200	0.4 ± 0.3	0	1.4 ± 0.9	0	0.3 ± 0.2	0
		50 - 100	5.0 ± 1.5	3	13 ± 4	11	3.5 ± 1.1	2
	> 160	100 - 150	5.2 ± 1.4	- 7	9.0 ± 2.5	5	4.0 ± 1.2	6
	/ / 100	150 - 200	1.3 ± 0.5	2	3.4 ± 1.2	3	0.9 ± 0.3	0
		> 200	1.6 ± 0.6	1	2.9 ± 0.9	5	1.3 ± 0.4	0

0 tau

$M_{\rm T}$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$M_{\ell\ell} < 100 \mathrm{GeV}$	$M_{\ell\ell} \ge 100 \mathrm{GeV}$
0 - 120	50 - 100	SR B01	SR B04
	> 100	SR B02	SR B05
> 120	> 50	SR B03	SR B06

3 lepton final state

$M_{\rm T}$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$m_{\ell\ell} < 100$	GeV	$m_{\ell\ell} \ge 100$	GeV
0-120	50 - 100	29 ± 7	26	2.6 ± 1.0	1
	> 100	9.8 ± 2.6	12	0.8 ± 0.3	1
> 120	> 50	13 ± 3	11	3.0 ± 1.1	3

on Z, off Z

 M_{τ} bins

nOSSF=0

 M_{II}, M_T

bins

3 lepton channel results

1 tau

	$M_{\text{T2}}(\ell_1, \tau)$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$M_{\ell\ell} < 60 \mathrm{GeV}$	$60 \le M_{\ell\ell} < 100 \text{GeV}$	$M_{\ell\ell} \ge 100 \mathrm{GeV}$
		50 - 100	SR E01	SR E05	
	/ 100	100 - 150	SR E02	SR E06	SR E09
ate		150 - 200	SR E03	SR E07	
		> 200	SR E04	SR E08	
2 taus	≥ 100	> 50		SR E10	
	$M_{\rm T2}(l,\tau)$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$m_{\ell\ell} < 60 \text{GeV}$	$60 \le m_{\ell\ell} < 100 \text{GeV}$	$m_{\ell\ell} \ge 100 \text{GeV}$
		50 - 100	19 ± 4 20	16 ± 4 26	
	< 100	100 - 150	$4.5\pm1.5 8$	3.4 ± 1.0 5	16 ± 0.7 1
		150 - 200	1.4 ± 0.6 0	0.7 ± 0.3 1	
		> 200	$0.9 \pm 0.3 0$	0.5 ± 0.2 0	
	≥ 100	> 50	1.3 ± 0	.5	1

 M_{11}, M_{T2}

bins

nOSSF=1

 M_{11}, M_{T2}

nOSOF=1 M_{ll}, M_{T2}

bins

bins

$M_{\rm T2}(\ell_1,\ell_2)~({\rm GeV})$	$E_{\rm T}^{\rm miss}$ (GeV)	$M_{\ell\ell} < 75\mathrm{GeV}$	$75\mathrm{GeV} \le M_{\ell\ell} < 105\mathrm{GeV}$	$M_{\ell\ell} \ge 105 \mathrm{GeV}$
	50 - 100	SR C01	SR C05	SR C09
< 100	100 - 150	SR C02	SR C06	SR C10
< 100	150 - 200	SR C03	SR C07	SR C11
	> 200	SR C04	SR C08	SR C12
> 100	50 - 200	SR C13	SR C05 – SR C07	SR C13
≥ 100	> 200	SR C14	SR C08	SR C14

3 lepton final state

$M_{T2}(l, l)$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$m_{\ell\ell} < 75 \text{GeV}$		$V \mid 75$	$\overline{5} \le m_{\ell\ell} < 1$	$m_{\ell\ell} \ge 105 \text{GeV}$		
	50 - 100	200 ±	50 1	62 10	000 ± 300	1007	120 ± 33	114
~ 100	100 - 150	25 ±	7 2	27	38 ± 8	35	31 ± 9	20
< 100	150 - 200	4.0 ± 1	1.5	2 1	1.3 ± 2.6	7	6.3 ± 2.2	7
	> 200	3.3 ± 1	1.4	2 7	7.6 ± 1.8	7	4.3 ± 1.5	7
$M_{T2}(l,l)$ (G			$E_{\rm T}^{\rm miss}$	(GeV)	off-Z			
≥ 10		00	50 -	- 200	3.7 ± 1.1	6		
		00	>	200	0.5 ± 0.2	0		

regions where there is a Z candidate are not split in MT2 categories.

1 tau

$M_{\rm T2}(\ell_1,\ell_2)$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$M_{\ell\ell} < 60 \mathrm{GeV}$	$60 \le M_{\ell\ell} < 100 \mathrm{GeV}$	$M_{\ell\ell} \ge 100 \mathrm{GeV}$		
	50 - 100	SR D01	SR D05	SR D09		
< 100	100 - 150	SR D02	SR D06	SR D10		
	150 - 200	SR D03	SR D07	SR D11		
	> 200	SR D04	SR D08	SR D12		
> 100	50 - 200	SR D13				
<u>~</u> 100	> 200	SR D14				

$M_{\mathrm{T2}}(l,l)$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$m_{\ell\ell} < 60 \text{GeV}$	$60 \le m_{\ell\ell}$	< 100 GeV	$m_{\ell\ell} \ge 100$	GeV
< 100	50 - 100	100 ± 30 82	97 ± 28	83	23 ± 7	25
	100 - 150	41 ± 12 27	32 ± 10	26	8.1 ± 2.7	7
	150 - 200	8.3 ± 2.5 10	8.5 ± 2.8	6	2.5 ± 1.1	4
	> 200	4.8 ± 1.8 3	2.7 ± 1.1	6	1.4 ± 0.7	2
≥ 100 -	50 - 200	3.5 ± 1.4			1	
	> 200	$0.3 \pm$	0.3		0	

$E^{\text{miss}}(C_{\Theta}V)$	0-	$\geq 1 au_{ m h}$	
L_{T} (GeV)	$nOSSF \ge 2$	$nOSSF \le 1$	$nOSSF \ge 0$
0 - 30	SR G01	SR H01	SR I01
30 - 50	SR G02	SR H02	SR I02
50 - 100	SR G03	SR H03	SR 103
> 100	SR G04	SR H04	SR I04

$E^{\text{miss}}(C_{\bullet}V)$	$0 au_h$		$\geq 1 au_h$			
$L_{\rm T}$ (GeV)	$nOSSF \ge$	2	$nOSSF \leq$	1	$nOSSF \ge$	0
0 - 30	148 ± 40	193	3.1 ± 0.8	3	10.9 ± 2.6	19
30 - 50	50 ± 12	62	1.8 ± 0.4	0	7.8 ± 2.0	9
50 - 100	12.7 ± 2.9	11	2.7 ± 0.5	5	9.0 ± 2.3	6
> 100	2.5 ± 0.5	2	3.5 ± 1.0	3	2.1 ± 0.7	2

Ewkinos in multileptons systematic uncertainties

Source	estimated uncertainty (%)
e/μ selection	3
$\tau_{\rm h}$ selection	6
Trigger efficiency	1-4
Jet energy scale	2–10
b tag veto	5
Pileup	1–5
Integrated luminosity	6.2
Theoretical (ttZ and ttW)	15
Theoretical (ZZ)	25
Conversions	20-50
Other backgrounds	50
Monte Carlo statistical precision	1–30
Nonprompt leptons	30–36
Charge misidentification	30
WZ normalization	9–11
WZ shape	10-80

CMS-PAS-SUS-16-024

OSSF dilepton search - revisiting the on-Z search

ATLAS Signal Region (SR)

 $p_T^{\text{leading lepton}} > 50 \text{ GeV}$, $p_T^{\text{subleading lepton}} > 25 \text{ GeV}$ $H_T + p_T^{l1} + P_T^{l2} > 600 \text{ GeV}$ $E_T^{\text{miss}} > 225 \text{ GeV}$ $\Delta \phi \left(\text{each of the leading jets, } E_T^{\text{miss}} \right) > 0.4$

• reminder

$$M_{T2}^{2} \equiv \min_{p_{1}+p_{2}=p_{T}} \left[\max\{m_{T}^{2}(p_{Tl^{-}}, p_{1}), m_{T}^{2}(p_{Tl^{+}}, p_{2})\} \right]$$

CMS-PAS-SUS-16-021

OSSF dilepton search - revisiting the on-Z search

MET region	150 – 225 GeV	225 – 300 GeV	\geq 300 GeV
Other rare	1.53 ± 0.79	0.80 ± 0.45	0.40 ± 0.23
WZ	7.01 ± 2.16	2.67 ± 0.85	2.61 ± 0.84
ZZ	4.20 ± 1.98	2.60 ± 1.36	2.03 ± 1.08
DY prediction	18.28 ± 2.91	4.69 ± 2.32	2.73 ± 1.56
tī	3.91 ± 1.36	0.50 ± 0.27	0.10 ± 0.11
Total bkg	34.9 ± 4.4	11.3 ± 2.9	7.9 ± 2.1
Observed	45	15	7

OSSF dilepton search - revisiting the on-Z search

Source of uncertainty	Uncertainty (%)
Luminosity	6.2
Pileup	0-3
b tag modeling	0-5
Lepton reconstruction and isolation	7
Fast simulation scale factors	4-5
Fast simulation MET uncertainty	1-10
Trigger modeling	5
Jet energy scale	1-5
ISR modeling	0-10
Statistical uncertainty	1-9
Total uncertainty	12-16

Data

Soft OS dilepton searches

Process	$E_{\rm T}^{\rm miss} = [125-200]$				
	$4 < M(\ell \ell) < 10$	$10 < M(\ell \ell) < 20$	$20 < M(\ell \ell) < 30$	$30 < M(\ell \ell) < 50$	
$tar{t}(2\ell)$	0.1 ± 0.1	0.4 ± 0.2	0.9 ± 0.3	1.6 ± 0.5	
DY	0.0 + 0.05	2.8 ± 1.4	2.6 ± 1.0	0.3 ± 0.2	
VV	0.3 ± 0.2	0.8 ± 0.4	0.5 ± 0.2	0.4 ± 0.2	
tW	0.0 + 0.2	0.7 ± 0.9	0.0 + 0.2	0.8 ± 1.0	
Non-prompt leptons	3.2 ± 1.8	3.8 ± 2.6	4.2 ± 2.8	1.6 ± 2.0	
Total SM prediction	3.6 ± 1.8	8.5 ± 3.1	8.2 ± 3.0	4.7 ± 2.3	
Data	0	2	6	5	
Process		$E_{\pi}^{\text{miss}} =$	[200-inf]		
	$4 < M(\ell \ell) < 10$	$10 < M(\ell \ell) < 20$	$20 < M(\ell \ell) < 30$	$30 < M(\ell \ell) < 50$	
$tar{t}(2\ell)$	0.0 + 0.05	0.3 ± 0.3	0.3 ± 0.2	0.2 ± 0.2	
DY	0.0 + 0.05	0.6 ± 0.3	0.6 ± 0.4	0.0 + 0.05	
VV	0.1 ± 0.1	0.6 ± 0.4	0.2 ± 0.1	0.3 ± 0.2	
Non-prompt leptons	2.3 ± 1.9	2.5 ± 1.9	1.2 ± 1.7	2.1 ± 1.5	
Total SM prediction	2.4 ± 2.1	4.1 ± 2.0	2.2 ± 1.8	2.6 ± 1.6	

2

2

1

1

Soft OS dilepton searches

Systematic uncertainty source	typical uncertainty
tt and DY+jets stat. unc. from MC	5-20%
tī modeling	$\lesssim 5~\%$
"Tight to loose ratio" closure in MC	5-25%
DY+jets closure in data	$\lesssim 5~\%$
VV cross section	5-10%
tW cross section	5-10 %
Lepton/Trigger/b-tag SF	1-6 %
Jet energy scale	1-5 %

Chargino-neutralino production & decay to WH with H \rightarrow 2b CMS-PAS-SUS-16-026

• select events with one lepton (pT > 30/25 GeV) and :

- 2 b-jets
- MET > 100 GeV
- MT and MCT > 150 GeV (to suppress semileptonic ttbar)
- Signal region :
 - defined by asking Mbb to be compatible with Higgs mass
 - look for resonance in the Mbb spectrum

Background

- from MC with dedicated control region to assess the modeling of most relevant background (dil. ttbar and W+jets)
- Mbb modelled checked in dilepton control region
- MET, MT and MCT in orthogonal sample built by inverting the Mbb requirement
- a b-jet veto control region is used to assess the modelling of the W+jets background

Chargino-neutralino production & decay to WH with $\rm H \rightarrow 2b$

- No significant deviation w.r.t. SM prediction
- Set limits on chargino-neutralino production decaying into WH

current dataset is at the edge of the sensitivity more data is needed to probe this phase-space

CMS-PAS-SUS-16-026

Chargino-neutralino production & decay to WH with $H \rightarrow 2b$

data	8
Dilepton top quark	8.9 ± 2.0
W + light jets	0.01 ± 0.01
W + HF	0.7 ± 0.5
$WZ \to \ell \nu b \bar{b}$	0.03 ± 0.03
Single lepton top quark	0.3 ± 0.3
Rare	0.3 ± 0.2
Total bkg	10.3 ± 2.1
$(m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{1}^{0}})$ (225,75)	1.7 ± 0.3
$(m_{\tilde{\chi}_{1}^{\pm}}^{\pm}, m_{\tilde{\chi}_{1}^{0}}^{\pm})$ (250,1)	5.6 ± 0.8
$(m_{\tilde{\chi}_{1}^{\pm}}^{n}, m_{\tilde{\chi}_{1}^{0}}^{n})$ (300,75)	4.1 ± 0.5
$(m_{\tilde{\chi}_{1}^{\pm}}^{\pm}, m_{\tilde{\chi}_{1}^{0}}^{-})$ (350,1)	4.1 ± 0.4

Source	Typical Values
Integrated luminosity	6.2%
MC statistics	3–40%
Renormalization and factorization scales	1–3%
B-tagging efficiency	2–3%
Lepton efficiency	2–5%
Trigger efficiency	1–5%
Jet energy scale	1–27%
$Fastsim E_{T}^{miss} resolution$	5–50%