

Supersymmetry searches in ATLAS

Edoardo Gorini – INFN Lecce & Università del Salento, Italy LHC Days in Split

September 19th-24th 2016, Split, Croatia

Supersymmetry (SUSY)

- Supersymmetry is the favoured extension of the Standard Model (SM)
- It would produce a compelling new Physics Scenario
- It is a fundamental theory which postulates a matter-force symmetry, introducing a super partner for each SM particle, with spin altered by $^{1\!/_2}$
- Allows solutions to open questions of the $\mathop{\rm SM}$
 - Fine tuning of the Higgs mass
 - Solution to the Hierarchy
 - Unification of fundamental interactions
- Provides an excellent candidate for the Dark Matter (Lightest Supersymmetric Particle, LSP) if R-parity is conserved
- In MSSM there are more than hundreds of different parameters
 - there is a huge phase space to look into, with many possible different signatures (jets/leptons/photons + MET)
- SUSY is: theoretically appealing, phenomenological rich and experimentally challenging

The ATLAS experiment

Multi-purpose collider detector for high-precision SM measurements and searches beyond SM

- Tracking system in $|\eta|$ < 2.5 (silicon pixels/strips and TR tracker) with insertable blayer.
- EM (liquid Ar) and Hadronic (scintillating tiles) calorimeters covering $|\eta| < 4.9$.
- Muon spectrometer for muon identification with $\Delta p_T/p_T < 10\%$ up to 1 TeV.
- Two magnet systems (toroidal and solenoidal).

Data collected in Run-2 at \sqrt{s} = 13 TeV: 3.2 fb⁻¹ in 2015, already 25.5 fb⁻¹ in 2016

Summary of SUSY Searches

Naturalness Blocks:

- Strong Production
 - Largest cross-sections
 - Targeting Gluinos and 1° and 2° generation Squarks
- Third Generation
 - Targeting Stop and Sbottom

- Expected lowest squark masses for naturalness reasons with masses $O({<}1{\rm TeV})$
- Electroweak Production
 - Direct Sleptons, Gauginos
 - Clean signatures, lowest masses

Typical ATLAS SUSY search strategy

- Data selected in the trigger plateau, asking for good data-taking conditions and optimal event reconstruction
- Rely on understanding of the SM backgrounds

E.Gorini – LHC Days in Split 2016

Strong Prod: 0L+(2-6)Jets+MET

- Signal to background discrimination based on M_{eff} , MET, RJigsaw
- + $13(M_{eff})$ +17 (RJR) signal regions, no excess found
- Gluino (Squark) masses excluded up to 1.86 (1.35) TeV for massless LSP
- For gluino decay via $\tilde{\chi}_2^{0}$, gluino masses below 1.9 TeV excluded for m($\tilde{\chi}_2^{0}$)~600 GeV

Strong Prod: 0L+(8-10)Jets+MET

- 8 to 10 jets consistent with decays of heavy objects re-clustered into a smaller number of high-mass jets
- + Signal to background discrimination based on MET, H_T and on MET significance
- 6 Signal Regions investigated, no excess found
- * For 2 step simplified models gluino masses excluded up to 1.6 TeV for massless LSP

E.Gorini – LHC Days in Split 2016

Strong Prod: 1L+(2-6)Jets+MET

Diboson

→ Total SM

W+iets

e/u + jets + E^{mi}

s = 13 TeV. 14.8 fb

Single top

Others

- Discrimination based on $M_{\rm eff},\,MET,\,M_{\rm t}$
- 4(squark)+6(gluino) different signal regions provide sensitivity to a broad range of sparticle mass spectra for both squark and gluino pair production models
- No significant excess observed
- Masses up to 1.8 TeV (Gluino) and up to 1.1 TeV (Squarks) are excluded for low neutralino masses

best expected sensitivity is used for each model point

RPV: gluino to 1L and (b)Jets

- Pair production of Gluinos decaying through the R-parity violating decay of either the neutralino into three quarks or the top squark into a anti-b and an anti-s quark
- Search for 1 lepton, >5 jets and (0 or >4)b-jets, no requirement on MET
- The limits are determined fitting the background model in a reduced set of bins obtaining model-independent upper limits $t_{\bar{t}}$
- Excluding Gluino masses up to 1.75 (1.4) TeV for the two models

Strong Prod: b-Jets+MET

- Gluino search via bottom (Gbb) or top (Gtt) decay (simplified models)
- + Final states with 0/1 light lepton (e/µ) and > 2b-jets
- At least one large-radius, trimmed jet, which is re-clustered from small-radius jets is required in some of the Gtt regions
- + Discrimination of S to B with $M_{\rm eff},\,MET$ and $M_{\rm T}$
- 7(2Gbb+5Gtt) Signal Regions addressed
- Exclusion of gluinos up to 1.89 TeV for massless LSP

3rd Gen: Stop (DM) in 0L

- Search for top with no leptons, ≥ 4 (≥1b)jets and MET, all hadronic
- Signal to Background discrimination performed with MET, $M_T(b)$ and H_T
- 6 SR Sets addressed for a total of 19 signal Regions studying various masses
- Given a massless LSP the exclusion limit for t1 is 820 GeV
- For models with associated production of Dark Matter with top pairs, neutralino masses up to 40 GeV and mediator masses up to 300 GeV are excluded

350

250 300

450 500

m(φ) [GeV]

3rd Gen: Stop (DM) in 1L

- Topology: 1 lepton, (b)Jets, MET •
- Variables used: MET, $M_{T}(b)$, H_{T} •
- 7 Signal Regions (2 for DM) •
- 3.3σ excess in DM low SR •
- For massless LSP limit m(t1) at 830GeV •
- Assuming a 1 GeV DM mass the maximal • coupling of g = 3.5 is excluded @95% CL for a (pseudo-)scalar mediator mass up to (350) 320 GeV

m_~[GeV]

 $\bar{t}(\bar{b})$

 $\mathsf{m}_{\widetilde{\chi}_i^\circ}\left[\mathsf{GeV}\right]$

700

600

500

400E

300È

200E

100

200

- Targets lightest Chargino-Chargino and Chargino-Neutralino slepton mediated decays
- 2(SF,DF)/3 leptons, (b)Jets Veto, Variables used: MET and MT2
- + 6 SR (2l) and 2SR (3l)
- Extend previous limits by 140 GeV and 300 GeV

- Chargino-Chargino and Chargino-Neutralino slepton mediated decays
- 2 hadronically decaying τ , b-jets Veto and Z-Veto, variables used: MET and MT2
- 2 SR addressed in MT2, red arrow
- 580 GeV and 700 GeV common mass limits with massless LSP

EWK prod: 4L+MET with **RPV** decays

- Search for charginos, RPV decays results in high multiplicity leptons and large MET
- + Search for 4 leptons, M_{eff} and MET, Z veto
- 2 signal region targeting different chargino mass ranges
- Excluding chargino masses up to 1.14 TeV for large LSP masses

p

W

ATLAS SUSY Searches 95% CL Lower Limits

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: August 2016

	Model	e, μ, τ, γ	γ Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	$\int \mathcal{L} dt [\mathbf{fb}]$	⁻¹] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ (\text{compressed}) \\ \bar{g}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{z}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \rightarrow q q \Psi^{\pm} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} \Psi^{\pm} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{s}\bar{s}, \bar{s} \rightarrow q \bar{s} \bar{s} \\ \bar{g}\bar{s}\bar{s} \rightarrow q \bar{s} \bar{s} \\ \bar{s}\bar{s} \bar{s} \bar{s} \rightarrow q \bar{s} \bar{s} \\ \bar{s}\bar{s} \bar{s} \bar{s} \bar{s} \bar{s} \bar{s} \\ \bar{s}\bar{s}\bar{s} \bar{s} \bar{s} \bar{s} \bar{s} \\ \bar{s}\bar{s}\bar{s} \bar{s} \bar{s} \\ \bar{s}\bar{s} \bar{s} \\ \bar{s}\bar{s} \bar{s} \bar{s} \bar{s} \\ \bar{s}\bar{s} \bar{s} \\ \bar{s}\bar{s} \bar{s} \\ \bar{s}\bar{s} \bar{s} \\ \bar{s}\bar{s} \\ \bar{s}\bar{s} \\ \bar{s} \bar{s} \\ \bar{s}\bar{s} \\ \bar{s} \bar{s} \\ \bar{s} \\ \bar{s} \bar{s} \\ \bar{s} \\ \bar{s} \\ \bar{s} \\ \bar{s} \\ \bar{s} $	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (\text{SS} \\ 1\text{-}2 \ \tau + 0\text{-}1 \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (\text{S} \\ 0 \\ \end{array}$	2-10 jets/3 / 2-6 jets 1-3 jets 2-6 jets 4 jets 0-3 jets ℓ 0-2 jets - 1 <i>b</i> 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 20.3 13.3 20.3 20.3	q. ğ. q. ğ. q. g. g. <th>1.85 TeV 1.85 TeV 1.85 TeV 1.83 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV 1.87 TeV 1.87 TeV</th> <th>$\begin{split} &m(\tilde{q})\!=\!m(\tilde{g}) \\ &m(\tilde{\ell}^{1}_{1})\!<\!200~\text{GeV}, m(1^{st}~\text{gen.}\tilde{q})\!=\!m(2^{ad}~\text{gen.}\tilde{q}) \\ &m(\tilde{\ell}^{1}_{1})\!=\!10~\text{GeV} \\ &m(\tilde{\ell}^{1}_{1})\!=\!0~\text{GeV} \\ &m(\tilde{\ell}^{1}_{1})\!=\!0~\text{GeV} \\ &m(\tilde{\ell}^{1}_{1})\!<\!400~\text{GeV}, m(\tilde{\ell}^{\pm})\!=\!0.5(m(\tilde{\ell}^{1}_{1})\!+\!m(\tilde{g})) \\ &m(\tilde{\ell}^{1}_{1})\!<\!400~\text{GeV} \\ &m(\tilde{\ell}^{1}_{1})\!<\!500~\text{GeV} \\ &cr(NLSP)\!<\!0.1~\text{mm} \\ &m(\tilde{\ell}^{1}_{1})\!\!>\!\!506~\text{GeV}, cr(NLSP)\!<\!0.1~\text{mm}, \mu\!<\!0 \\ &m(\tilde{k}^{1}_{1})\!\!>\!\!680~\text{GeV}, cr(NLSP)\!<\!0.1~\text{mm}, \mu\!>\!0 \\ &m(LSP)\!\!<\!30~\text{GeV} \\ &m(\tilde{G})\!\!>\!\!1.8\times10^{-4}~\text{eV}, m(\tilde{g})\!=\!\mathrm{m}(\tilde{q})\!=\!\!1.5~\text{TeV} \end{split}$</th> <th>1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518</th>	1.85 TeV 1.85 TeV 1.85 TeV 1.83 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV 1.87 TeV 1.87 TeV	$\begin{split} &m(\tilde{q})\!=\!m(\tilde{g}) \\ &m(\tilde{\ell}^{1}_{1})\!<\!200~\text{GeV}, m(1^{st}~\text{gen.}\tilde{q})\!=\!m(2^{ad}~\text{gen.}\tilde{q}) \\ &m(\tilde{\ell}^{1}_{1})\!=\!10~\text{GeV} \\ &m(\tilde{\ell}^{1}_{1})\!=\!0~\text{GeV} \\ &m(\tilde{\ell}^{1}_{1})\!=\!0~\text{GeV} \\ &m(\tilde{\ell}^{1}_{1})\!<\!400~\text{GeV}, m(\tilde{\ell}^{\pm})\!=\!0.5(m(\tilde{\ell}^{1}_{1})\!+\!m(\tilde{g})) \\ &m(\tilde{\ell}^{1}_{1})\!<\!400~\text{GeV} \\ &m(\tilde{\ell}^{1}_{1})\!<\!500~\text{GeV} \\ &cr(NLSP)\!<\!0.1~\text{mm} \\ &m(\tilde{\ell}^{1}_{1})\!\!>\!\!506~\text{GeV}, cr(NLSP)\!<\!0.1~\text{mm}, \mu\!<\!0 \\ &m(\tilde{k}^{1}_{1})\!\!>\!\!680~\text{GeV}, cr(NLSP)\!<\!0.1~\text{mm}, \mu\!>\!0 \\ &m(LSP)\!\!<\!30~\text{GeV} \\ &m(\tilde{G})\!\!>\!\!1.8\times10^{-4}~\text{eV}, m(\tilde{g})\!=\!\mathrm{m}(\tilde{q})\!=\!\!1.5~\text{TeV} \end{split}$	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g},\tilde{g} \!\rightarrow\! b \tilde{b} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g},\tilde{g} \!\rightarrow\! t t \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g},\tilde{g} \!\rightarrow\! b t \tilde{\chi}_1^+ \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	<u>ĝ</u> <u>ğ</u> <u>ĝ</u>	1.89 TeV 1.89 TeV 1.37 TeV	$ \begin{split} & m(\tilde{X}_{1}^{0}) {=} 0 GeV \\ & m(\tilde{X}_{1}^{0}) {=} 0 GeV \\ & m(\tilde{X}_{1}^{0}) {<} {300 GeV} \end{split} $	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{\chi}_1^0 \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{\chi}_1^+ \\ \bar{n}_1 \bar{n}_1, \bar{b}_1 \rightarrow b \bar{\chi}_1^+ \\ \bar{n}_1 \bar{n}_1, \bar{n}_1 \rightarrow b \bar{\chi}_1^+ \\ \bar{n}_1 \bar{n}_1, \bar{n}_1 \rightarrow b \bar{\chi}_1^0 \\ \bar{n}_1 \bar{n}_1, \bar{n}_1 \rightarrow b \bar{\chi}_1^0 \\ \bar{n}_1 \bar{n}_1, \bar{n}_1 \rightarrow b \bar{\chi}_1^0 \\ \bar{n}_1 \bar{n}_1 (n \text{atural GMSB}) \\ \bar{n}_2 \bar{n}_2 \bar{n}_1 \bar{n}_2 \bar{n}_1 + Z \\ \bar{n}_2 \bar{n}_1 \bar{n}_2 \rightarrow \bar{n}_1 + H \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS} \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b) 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 4.7/13.3 4.7/13.3 3.2 20.3 13.3 20.3	Š1 840 GeV Š1 325-685 GeV Ř117-170 GeV 200-720 GeV Ř1 90-198 GeV Ž1 90-323 GeV Ž1 90-323 GeV Ž1 90-323 GeV Ž1 90-323 GeV Ž1 200-700 GeV Ž2 290-700 GeV Ž2 320-620 GeV		$\begin{split} m(\tilde{\chi}_{1}^{0}) &< 100 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) &< 150 \text{GeV}, \ m(\tilde{\chi}_{1}^{0}) &= m(\tilde{\chi}_{1}^{0}) + 100 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) &= 2m(\tilde{\chi}_{1}^{0}), \ m(\tilde{\chi}_{1}^{0}) &= 55 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) &= 16 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) &= 150 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) &= 150 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) &= 150 \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) &= 6 \text{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu} (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1} \nu \tilde{\ell}_{\ell} (\ell \tilde{\nu} \nu) \tilde{\nu} \tilde{\ell}_{\ell} (\ell \tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\nu} \tilde{\nu}_{1}^{0} \tilde{\ell}_{2} \tilde{\nu}_{1}^{0} \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\nu} \tilde{\nu}_{1}^{0} \tilde{h} \tilde{\chi}_{1}^{0} , h \rightarrow b \tilde{b} / W W \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\nu} \tilde{\kappa}_{1}^{0} \tilde{h} \\ GGM (bino NLSP) weak proc \\ GGM (bino NLSP) weak prod \\ \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu \\ e, \mu \\ r \\ r \\ r \\ r \\ \gamma \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \\ . \qquad 2 \gamma \end{array}$	0 0 - 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3		$m(\tilde{x}_{1}^{0})=0$ V $m(\tilde{x}_{1}^{+})=n$ $m(\tilde{x}_{2}^{0})=n$	$\begin{split} &m(\tilde{\chi}_{1}^{0}){=}0GeV \\ &GeV, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{0}){=}0GeV, m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ &(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{1}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, \tilde{\ell} decoupled \\ &m(\tilde{\chi}_{1}^{1}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, \tilde{\ell} decoupled \\ &(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{2}^{0}){+}m(\tilde{\chi}_{1}^{0})) \\ &cr{<}1mm \\ &cr{<}1mm \end{split}$	1403.5294 ATLAS-CONF-2016-096 ATLAS-CONF-2016-093 ATLAS-CONF-2016-096 1403 5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	$\begin{array}{l} \label{eq:constraints} \begin{split} & \text{Direct}\tilde{\chi}_1^+\tilde{\chi}_1^- \text{ prod., long-lived}\\ & \text{Direct}\tilde{\chi}_1^+\tilde{\chi}_1^- \text{ prod., long-lived}\\ & \text{Stable, stopped}\tilde{g}\text{R-hadron} \\ & \text{Stable}\tilde{g}\text{R-hadron} \\ & \text{Metastable}\tilde{g}\text{R-hadron} \\ & \text{GMSB, stable}\tilde{\tau},\tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e},\tilde{\mu}) + ; \\ & \text{GMSB},\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G},\text{long-lived}\tilde{\chi}_1^0 \\ & \tilde{g}\tilde{g},\tilde{\chi}_1^0 \rightarrow e e e e/e \mu e \nu / \mu \mu \nu \\ & \text{GM}\tilde{g}g,\tilde{\chi}_1^0 \rightarrow ZG \\ \end{split}{}$	$ \begin{array}{c} \overline{\chi}_{1}^{\pm} & \text{Disapp. tri} \\ \overline{\chi}_{1}^{\pm} & \text{dE/dx trk} \\ 0 & \text{trk} \\ \text{dE/dx trk} \\ \text{r}(e,\mu) & 1\text{-}2\mu \\ 2\gamma \\ \text{displ. } ee/e\mu/ \\ \text{displ. vtx + j} \end{array} $	k 1 jet - 1-5 jets - - - - - - μμ - ets -	Yes Yes - - Yes - Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	X [±] ₁ 270 GeV X [±] ₁ 495 GeV \tilde{s} 850 GeV \tilde{s} 850 GeV \tilde{s} 850 GeV \tilde{s} 440 GeV \tilde{x}_1^0 1.0 Te \tilde{x}_1^0 1.0 Te	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{\chi}^{+}_{1})\!-\!m(\tilde{\chi}^{0}_{1})\!-\!160\;MeV,\;\tau(\tilde{\chi}^{+}_{1})\!=\!0.2\;ns\\ & m(\tilde{\chi}^{+}_{1})\!-\!n(\tilde{\chi}^{0}_{1})\!-\!160\;MeV,\;\tau(\tilde{\chi}^{+}_{1})\!<\!15\;ns\\ & m(\tilde{\chi}^{0}_{1})\!=\!100\;GeV,\;\tau\!>\!10\;\musc\!<\!\tau(\tilde{\varrho})\!<\!1000\;s\\ & m(\tilde{\chi}^{0}_{1})\!=\!100\;GeV,\;\tau\!>\!10\;ns\\ & 10\!<\!tand\!\!>\!56\\ & 10\!<\!tand\!\!>\!56\\ & 1\!<\!\tau(\tilde{\chi}^{0}_{1})\!<\!3ns,\;SPS8\;model\\ & 1\!<\!\tau(\tilde{\chi}^{0}_{1})\!<\!740\;mm,\;m(\tilde{\varrho})\!=\!1.3\;TeV\\ & 6\;<\!\tau(\tilde{\chi}^{0}_{1})\!<480\;mm,\;m(\tilde{\varrho})\!=\!1.1\;TeV \end{split}$	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{split} LFV & p \overline{p \to \tilde{\mathbf{v}}_{\tau}} + X, \tilde{\mathbf{v}}_{\tau} \to e\mu/e\tau/\mu \\ Bilinear & RPV CMSSM \\ \tilde{X}_1^{\top} \tilde{X}_1^{\top}, \tilde{X}_1^{+} \to W \tilde{X}_1^{0}, \tilde{X}_1^{0} \to eev, e\mu v, \\ \tilde{X}_1^{\top} \tilde{X}_1^{\top}, \tilde{X}_1^{+} \to W \tilde{X}_1^{0}, \tilde{X}_1^{0} \to \tau \tau v_e, e\tau v \\ \tilde{g} \tilde{s}, \tilde{g} \to q q \\ \tilde{g} \tilde{s}, \tilde{g} \to q q \\ \tilde{g} \tilde{s}, \tilde{g} \to d q \tilde{X}_1^{0}, \tilde{X}_1^{0} \to q q q \\ \tilde{g} \tilde{s}, \tilde{g} \to \tau \tilde{I}_1, \tilde{I}_1 \to b s \\ \tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \to b s \\ \tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \to b \end{split} $	$\begin{array}{cccc} \tau & e\mu, e\tau, \mu\tau \\ & 2 & e, \mu \ (\text{SS} \\ \mu\mu\nu & 4 & e, \mu \\ v_{\tau} & 3 & e, \mu + \tau \\ & 0 \\ & 1 & e, \mu \\ & 1 & e, \mu \\ & 0 \\ & 2 & e, \mu \end{array}$		Yes Yes Yes ets - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 15.4 20.3	\$\vec{r}\$, \$\vec{r}\$, \$\vec{r}\$ 1.1. \$\vec{x}\$_1^+ 450 GeV 1.1. \$\vec{x}\$_1^+ 450 GeV 1.08 \$\vec{x}\$ 1.08 \$\vec{x}\$ \$\vec{x}\$ 1.09 \$\vec{x}\$ \$\vec{x}\$ 1.08 \$\vec{x}\$ \$\vec{x}\$ 1.09 \$\vec{x}\$ \$\vec{x}\$ 1.00 GeV \$\vec{x}\$ \$\vec{x}\$ 1.01 GeV \$\vec{x}\$	1.9 TeV 1.45 TeV TeV 1.55 TeV 1.75 TeV 1.75 TeV 1.4 TeV V	$\begin{array}{l} \lambda_{311}'=0.11,\lambda_{132/133/233}=0.07\\ m(\tilde{q})=m(\tilde{g}),c\tau_{LSP}<1mn\\ m(\tilde{k}_{1}^{0})>400GeV,\lambda_{124}\neq0(k=1,2)\\ m(\tilde{k}_{1}^{0})>0.2xm(\tilde{k}_{1}^{1}),\lambda_{133}\neq0\\ BR(\prime)=BR(\prime)=BR(\prime)=BR(\prime)=0\%\\ m(\tilde{k}_{1}^{0})=800GeV\\ m(\tilde{k}_{1}^{0})=700GeV\\ 625GeV20\% \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	ε 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
	*Only a selection of the states or phenomen	ne available i a is shown	mass limits	on ne	^{ew} 1) ⁻¹	1	Mass scale [TeV]	-

states or phenomena is shown.

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

16

Summary and conclusions

- Run-2 with pp collisions at 13 TeV has been phenomenal, with more than 25 fb⁻¹ of data collected from ATLAS until first week of September 2016
- Most results presented here with 13-18 $\rm fb^{-1}$ shown for just some signature of interest
- Many other results have been produced and are reported in backup slides
- Search strategy for SUSY has been extended with respect to Run-1
- No significant excess of events has been found so far and all results agree well with Standard Model
- LHC is expected to deliver up 40 fb⁻¹ in 2016 and many more regions will be tested to update limits
- A very challenging year for SUSY !

Backup slides

- Topology: 2 leptons+(b)Jets + MET
- discrimination based on Super-Razor(three-Body), MT2(ll)(bb), (2+4+2) Signal Regions addressed
- The chargino decay mode is excluded for a stop mass between 400 and 495 GeV, a chargino mass of 100 GeV and a neutralino mass of 50 GeV (left)
- For a mass difference of 90 GeV between the stop and the neutralino and the three body decay mode, a stop mass below $365~{
 m GeV}$ is excluded
- For the models of the associated production of DM with top pairs, mediator mass < 330 GeV and DM particle mass < 20 GeV excluded

Strong Prod: SS/3L+Jets+MET

- Very clean channel, very small SM background, Sbottom prod
- Sensible to 4 R-Parity Conserving and 4 R-Parity Violating Models
- 4 RPC + 3 RPV Signal Regions addressed

3^{rd} Gen: Stop in Z

- Search for heavier stop state \widetilde{t}_2
- Topology: Z(ll)+l+(b)Jets +MET
- Variables used: MET, p_T^{ll}
- 3 Signal Region
- Masses of the \widetilde{t}_2 up to 730 GeV and and LSP up to 325 are excluded

Var/Region	SRL	SRH	SRE
$m_{\ell\ell} ~[{ m GeV}]$	76.2 - 106.2	76.2 - 106.2	76.2 - 106.2
Leading lepton $p_{\rm T}$ [GeV]	> 40	> 40	> 40
Leading jet $p_{\rm T}$ [GeV]	> 60	> 100	> 80
$n_{ m b-jets}$	≥ 1	≥ 1	≥ 1
$n_{ m jets}$	≥ 6	≥ 5	≥ 5
$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100	> 100
$p_{\mathrm{T}}^{\ell \bar{\ell}} \mathrm{[GeV]}$	-	> 200	> 100

3rd Gen: Stop in Stau

- Search for stop with 2τ +(b)jets +MET (GMSB, nGM)
- Signal to BG discrimination based on: MET, MT2 $\,$
- 1 SR defined targeting high stop mass region
- Masses of the top squark up to $870\ {\rm GeV}$ and stau up to $730\ {\rm GeV}$ are excluded

ATLAS-CONF-2016-048

3rd Gen: Stop in 1L excess

Signal region	SR1	tN_high	bC2x_diag	$bC2x_med$	bCbv	DM_low	DM_high
Observed	37	5	37	14	7	35	21
Total background	24 ± 3	3.8 ± 0.8	22 ± 3	13 ± 2	7.4 ± 1.8	17 ± 2	15 ± 2
$t\bar{t}$	8.4 ± 1.9	0.60 ± 0.27	6.5 ± 1.5	4.3 ± 1.0	0.26 ± 0.18	4.2 ± 1.3	3.3 ± 0.8
W+jets	2.5 ± 1.1	0.15 ± 0.38	1.2 ± 0.5	0.63 ± 0.29	5.4 ± 1.8	3.1 ± 1.5	3.4 ± 1.4
Single top	3.1 ± 1.5	0.57 ± 0.44	5.3 ± 1.8	5.1 ± 1.6	0.24 ± 0.23	1.9 ± 0.9	1.3 ± 0.8
$t\bar{t} + V$	7.9 ± 1.6	1.6 ± 0.4	8.3 ± 1.7	2.7 ± 0.7	0.12 ± 0.03	6.4 ± 1.4	5.5 ± 1.1
Diboson	1.2 ± 0.4	0.61 ± 0.26	0.45 ± 0.17	0.42 ± 0.20	1.1 ± 0.4	1.5 ± 0.6	1.4 ± 0.5
Z+jets	0.59 ± 0.54	0.03 ± 0.03	0.32 ± 0.29	0.08 ± 0.08	0.22 ± 0.20	0.16 ± 0.14	0.47 ± 0.44
$t\bar{t}$ NF	1.03 ± 0.07	1.06 ± 0.15	0.89 ± 0.10	0.95 ± 0.12	0.73 ± 0.22	0.90 ± 0.17	1.01 ± 0.13
W+jets NF	0.76 ± 0.08	0.78 ± 0.08	0.87 ± 0.07	0.85 ± 0.06	0.97 ± 0.12	0.94 ± 0.13	0.91 ± 0.07
Single top NF	1.07 ± 0.30	1.30 ± 0.45	1.26 ± 0.31	0.97 ± 0.28	-	1.36 ± 0.36	1.02 ± 0.32
$t\bar{t} + W/Z$ NF	1.43 ± 0.21	1.39 ± 0.22	1.40 ± 0.21	1.30 ± 0.23	_	1.47 ± 0.22	1.42 ± 0.21
$p_0(\sigma)$	0.012(2.2)	0.26(0.6)	0.004(2.6)	0.40(0.3)	0.50(0)	0.0004(3.3)	0.09(1.3)
$N_{\rm non-SM}^{\rm limit}$ exp. (95% CL)	$12.9^{+5.5}_{-3.8}$	$5.5^{+2.8}_{-1.1}$	$12.4^{+5.4}_{-3.7}$	$9.0^{+4.2}_{-2.7}$	$7.3^{+3.5}_{-2.2}$	$11.5^{+5.0}_{-3.4}$	$9.9^{+4.6}_{-2.9}$
$N_{\rm non-SM}^{\rm limit}$ obs. (95% CL)	26.0	7.2	27.5	9.9	7.2	28.3	15.6

SUSY prospects (ATLAS-PHYS-PUB-2014-010)

 ATLAS studied long term prospects for the (HL-)LHC with 300, 3000 fb⁻¹@14 TeV
 Discovery potential up to 2.5 TeV gluinos, 1.3 TeV squarks/sbottom and 800 GeV Electroweakinos

SUSY signal properties

• SUSY processes are generally characterized by large activity in the event, so they have high values of:

$$H_{\rm T} = p_{\rm T}^{\ell} + \sum_{i=1}^{N_{\rm jet}} p_{{\rm T},j}$$

$$m_{\rm eff}^{\rm inc} = p_{\rm T}^{\ell} + \sum_{i=1}^{N_{\rm jet}} p_{{\rm T},j} + E_{\rm T}^{\rm miss}$$

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}E_{\rm T}^{\rm miss}(1 - \cos[\Delta\phi(\boldsymbol{p}_{\rm T}^{\ell}, \boldsymbol{p}_{\rm T}^{\rm miss})])}$$

 $m_{\mathrm{T2}}(\mathbf{p}_{\mathrm{T},1},\mathbf{p}_{\mathrm{T},2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) = \min_{\mathbf{q}_{\mathrm{T},1}+\mathbf{q}_{\mathrm{T},2}=\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}} \{\max[\ m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T},1},\mathbf{q}_{\mathrm{T},1}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T},2},\mathbf{q}_{\mathrm{T},2})\]$

- Mass splitting between SUSY particles can be:
 - **Large** \Rightarrow production of boosted unstable particles (W, Z, top).
 - Small ⇒ presence of soft objects escaping reconstruction/detection: an additional hard jet (from ISR) is often required to get more boost, but introduces ISR systematics to be studied.
- N.B.: in the following, only e^{\pm} and μ^{\pm} are considered as *«leptons»*

25

Definition of transverse masses

Transverse mass m_T

$$m_{\rm T}^2(\mathbf{p}_{\rm T}^1, \mathbf{p}_{\rm T}^2) = [E_{\rm T}^1 + E_{\rm T}^2]^2 - [\mathbf{p}_{\rm T}^1 + \mathbf{p}_{\rm T}^2]^2$$

• $m_{\rm T} \equiv m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss}[1 - \cos\Delta\phi(\mathbf{p}_{\rm T}^{\ell}, \mathbf{p}_{\rm T}^{\rm miss})]}$ bounded by m_W : reduce $WW, Wt, t\bar{t}$

Stransverse mass m_{T2}

generalization of $m_{
m T}$ to pair decay with final state consisting of 2 visible objects and $E_{
m T}^{
m miss}$

$$m_{\rm T2}(\mathbf{p}_{\rm T}^{1}, \mathbf{p}_{\rm T}^{2}, \mathbf{q}_{\rm T}) = \min_{\mathbf{q}_{\rm T}^{1} + \mathbf{q}_{\rm T}^{2} = \mathbf{q}_{\rm T}} \left\{ \max[m_{\rm T}(\mathbf{p}_{\rm T}^{1}, \mathbf{q}_{\rm T}^{1}), m_{\rm T}(\mathbf{p}_{\rm T}^{2}, \mathbf{q}_{\rm T}^{2})] \right\}$$

- $m_{T2} \equiv m_{T2}(\mathbf{p}_T^{l_1}, \mathbf{p}_T^{l_2}, \mathbf{p}_T^{miss})$ bounded by m_W : reduce $WW, Wt, t\bar{t} \to 2\ell$
- am_{T2} bounded by m_t : reduce $t\bar{t} \rightarrow 2\ell$ with a lost lepton
- $m_{\Gamma 2}^{\tau}$ bounded by $m_W: \underline{\text{reduce } t\overline{t} \to \ell \tau^{\text{had}}}$

 m_{T2}

