Electroweak Results in LHCb

Federico Betti on behalf of the LHCb collaboration

LHC Days in Split September 22, 2016

Sezione di Bologna

• Z production asymmetries

• W/Z production with jets

- Cross-section ratios and W charge asymmetries
- $W \rightarrow l\nu$ forward production
- The LHCb detector • $Z \rightarrow ll$ forward production
- Motivations to study EW bosons processes

F. Betti - INFN Bologna & LHCb Collaboration

Motivations

LHC Days in Split - September 22, 2016

- Measurements of EW bosons production cross section constrain **PDFs** in protons
- LHCb acceptance \rightarrow access to Bjorken $-x \approx 10^{-4}$
- W/Z cross-section ratio \rightarrow tests of the SM
- A_{FB} in Z production \rightarrow precise measurement of $\sin^2 \theta_W^{eff}$

The LHCb detector

[Int. J. Mod. Phys. A 30, 1530022 (2015)] Single arm spectrometer in Excellent vertex resolution (13 µm in transverse plane ECAL HCAL M4 M5 SPD/PS for primary vertex) M3 M2 Magnet RICH2 M1 Excellent IP resolution RICH1 $(\sim 13 \ \mu m \text{ on the transverse})$ Very good momentum resolution ($\delta p/p \sim 0.5\%$ – • Excellent **PID** capabilities Very good trigger efficiency ($\sim 90\%$) 10m

 $2 < \eta < 5$ range

plane)

0.8%)

$Z \rightarrow \mu^+ \mu^-$ forward production

LHCb

- Two muons with $2.0 < \eta < 4.5$, $p_T > 20 \text{ GeV}$, $60 < m(\mu\mu) < 120 \text{ GeV}$
- Signal purity ≈ 99%
- **Differential** cross-sections in bins of y_Z , $p_{T,Z}$, ϕ_Z^* $\phi_Z^* = \frac{\tan(\phi_{acop}/2)}{\cosh(\Delta \eta/2)}$
- Total uncertainties (dominated by lumi + beam energy) on total cross-section
 - 1. @ 7 TeV: 2.3% [JHEP 08 (2015) 039]
 - 2. @ 8 TeV: 1.8% [JHEP 01 (2016) 155]

Good overall **agreement** with predictions at NLO and **NNLO** for various PDFs

$Z \rightarrow e^+e^-$ forward production

- Two electrons with 2.0 < η < 4.5, p_T > 20 GeV, 60 < m(ee) < 120 GeV
- ECAL saturation → limited
 bremmstrahlung recovery
 → p_T not well known
- Results corrected to the Born level using MC
- Total uncertainties (dominated by lumi) on total cross-section

1.@ 7 TeV: 4.4% [JHEP 02 (2013) 106]

2.@ 8 TeV: 2% [JHEP 05 (2015) 109]

$Z \rightarrow l^+l^-$ forward production @ 13 TeV

[arXiv:1607.06495]

- $0.3 fb^{-1}$ dataset
- Same analysis strategy as in Run I
- Dominated by **lumi** uncertainty (3.9%)

- No discrepancies in y_Z (wrt $\mathcal{O}(\alpha_s^2)$ pQCD) and $p_{T,Z}$, ϕ_{η}^* (wrt higher orders pQCD) distributions
- No specific PDFs are favoured

$W \rightarrow \mu \nu$ forward production

- Muon with 2.0 < η < 4.5, p_T > 20 GeV
- Isolated muon, E_{calo}/p < 4%, veto on other muon
- Backgrounds: heavy hadron decays, hadron mis-ID, EW processes
- **Purity** \approx 77% from fit to $p_T(\mu)$

@7 TeV: [JHEP 12 (2014) 079] @8 TeV: [JHEP 01 (2016) 155]

- Error dominated by **lumi** and beam **energy** uncertainties
- Agreement with NNLO predictions

F. Betti - INFN Bologna & LHCb Collaboration

$W \rightarrow ev$ forward production (@ 8 TeV)

- 2 < η < 4.25 because of **ECAL acceptance**, p_T > 20 GeV
- ECAL saturation $\rightarrow p_T$ not well known, but still useful to determine signal **yield**

LHCb data

- Cuts on **IP** and **isolation** requirements
- Similar backgrounds as $W \rightarrow \mu v$

 2.5% uncertainty, mainly due to **systematics**

LHCb. $\sqrt{s} = 8 \text{ TeV}$

Agreement with NNLO calculations in pQCD

1000

 η^{ϵ}

Cross-section ratios (W/Z)

- Many uncertainties are reduced/canceled in crosssection ratios
- Dominant uncertainties on the ratios are due to purity and samples size
- Test of the SM at percent level
- **Consistent** with $\mathcal{O}(\alpha_s^2)$ calculations
- More data from Run II will be very useful

Cross-section ratios (8/7 TeV)

- Dominant uncertainty is due to **luminosity**
- **Per-mille** precision in theoretical predictions
- Agreement with expectations

Cross-section double ratios

- Here the **luminosity** uncertainties cancel
- **Per-mille** precision in theoretical predictions
- 2σ deviation for some ratios → motivation to extend the analysis at higher energies

W charge asymmetries

- $\sigma(W^+)/\sigma(W^-)$ useful to constrain the ratio between up and down valence quark in proton
- Good agreement with the SM

W+jet and Z+jet @ 8 TeV

- More sensitivity to the gluon PDF
- **Leptons**: same selection as for $W \rightarrow \mu \nu$ and $Z \rightarrow \mu \mu$
- Jets: reconstructed with anti- k_T algorithm, $p_T >$ 20 GeV, 2.2 < $\eta^{jet} <$ 4.2, pick highest p_T jet
- Measure differential crosssection in bins of:
 - 1. p_T^{jet} , η^{jet} , y^Z , $|\phi^Z \phi^{jet}|$ for Zj2. p_T^{jet} , η^{jet} , η^{μ} for Wj

W+jet and Z+jet @ 8 TeV

[JHEP 05 (2016) 131]

- Uncertainty dominated by jet energy scale and purity
- **Good agreement** with predictions at $\mathcal{O}(\alpha_s^2)$ for all distributions

$W + b\overline{b}, W + c\overline{c}, t\overline{t} @ 8 \text{ TeV}$

- Selection similar to Wj analysis
- 12.5 GeV $< p_T^{jet} <$ 100 GeV and $\Delta R >$ 0.5 between the 3 objects
- Backgrounds: $Z + b\overline{b}$, $Z + c\overline{c}$, $Z(\tau\overline{\tau}) + b/c$, $Z(b\overline{b}) + W/Z$, QCD multi-jet
- Four-dimensional fit in:
 - 1. m_{jj}
 - 2. uGB to discriminate $W + b\overline{b}$ from $t\overline{t}$
 - 3. BDT to discriminate *b/c* from light-quark jet (for each jet)

$W + b\overline{b}, W + c\overline{c}, t\overline{t} @ 8 \text{ TeV}$

Agreement with the predictions @ NLO (using MCFM)

F. Betti - INFN Bologna & LHCb Collaboration

Z production asymmetry

$$A_{\rm FB} = \frac{N(\cos\theta^* > 0) - N(\cos\theta^* < 0)}{N(\cos\theta^* > 0) + N\cos\theta^* < 0)}$$

- θ^* is μ^- polar angle in **Collins-Soper** frame
- A_{FB} depends on V-A coupling \rightarrow sensitive to $\sin^2 \theta_W^{eff}$
- High sensitivity at **high rapidities** \rightarrow LHCb is a good place to study A_{FB} !
- Same selection as in $Z \rightarrow \mu\mu$ analysis, $m(\mu\mu)$ extended to 160 GeV
- Combination of 7 TeV and 8 TeV results

Z production asymmetry

- Asymmetry is unfolded to correct for detector effects and bin-to-bin migrations
- $\sin^2 \theta_W^{eff}$ determined comparing simulation with measured A_{FB} , using the χ^2 minimization
- Significant **uncertainties** from:
 - 1. Curvature correction
 - 2. Detector alignment
 - 3. Momentum scale

[JHEP 11 (2015) 190]

Z production asymmetry

$\sin^2 \theta_W^{eff} = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056$

- **Consistent** with the world average
- Statistically limited → more data expected from Run II

[JHEP 11 (2015) 190]

Conclusions

- LHCb acceptance: sensitivity to high and low
 Bjorken-x
- Precise EW bosons production measurements which agree with the SM and put constraints on the PDFs
- Very precise measurement of $sin^2 \theta_W^{eff}$
- Expectations from Run II: increased precision with 2 fb⁻¹/year and new cross-section ratios available at higher energy

Backup slides

$Z \rightarrow l^+l^-$ forward production

• @ 7 TeV:

 $o \sigma(Z → \mu^+ \mu^-) = 76.0 \pm 0.3(\text{stat}) \pm 0.5(\text{syst}) \pm 1.0(\text{beam}) \pm 1.3(\text{lumi}) \text{ pb}$ $o \sigma(Z → e^+ e^-) = 76.0 \pm 0.8(\text{stat}) \pm 2.0(\text{syst}) \pm 2.6(\text{lumi}) \pm 0.4(\text{FSR}) \text{ pb}$

• @ 8 TeV:

 $o \sigma(Z → \mu^+ \mu^-) = 95.0 \pm 0.3(\text{stat}) \pm 0.7(\text{syst}) \pm 1.1(\text{beam}) \pm 1.1(\text{lumi}) \text{ pb}$ $o \sigma(Z → e^+ e^-) = 93.81 \pm 0.41(\text{stat}) \pm 1.48(\text{syst}) \pm 1.14(\text{lumi}) \text{ pb}$

• @ 13 TeV:

 $\circ \sigma(Z \rightarrow l^+l^-) = 194.3 \pm 0.9(\text{stat}) \pm 3.3(\text{syst}) \pm 7.6(\text{lumi}) \text{ pb}$

$W \rightarrow l\nu$ forward production

• @ 7 TeV:

 $o \sigma(W^+ \to \mu^+ \nu) = 878.0 \pm 2.1(\text{stat}) \pm 6.7(\text{syst}) \pm 9.3(\text{beam}) \pm 15.0(\text{lumi}) \text{ pb}$ $o \sigma(W^- \to \mu^- \nu) = 689.5 \pm 2.0(\text{stat}) \pm 5.3(\text{syst}) \pm 6.3(\text{beam}) \pm 11.8(\text{lumi}) \text{ pb}$

• @ 8 TeV:

 $o \sigma(W^+ \to \mu^+ \nu) = 1093.6 \pm 2.1(\text{stat}) \pm 7.2(\text{syst}) \pm 10.9(\text{beam}) \pm 12.7(\text{lumi}) \text{ pb}$ $o \sigma(W^- \to \mu^- \nu) = 818.4 \pm 1.9(\text{stat}) \pm 5.0(\text{syst}) \pm 7.0(\text{beam}) \pm 9.5(\text{lumi}) \text{ pb}$ $o \sigma(W^+ \to e^+ \nu) = 1124.4 \pm 2.1(\text{stat}) \pm 21.5(\text{syst}) \pm 11.2(\text{beam}) \pm 13.0(\text{lumi}) \text{ pb}$ $o \sigma(W^- \to e^- \nu) = 809.0 \pm 1.9(\text{stat}) \pm 18.1(\text{syst}) \pm 7.0(\text{beam}) \pm 9.4(\text{lumi}) \text{ pb}$