ACDM Cosmology

James Rich

SPP-IRFU CEA-Saclay 91191 Gif-sur-Yvette

james.rich@cea.fr

Split, September 23, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

- What is ACDM?
- Evidence for ACDM

Baryon Acoustic Oscillations (BAO) Cosmic Microwave Background (CMB)

• Some tension in cosmology The Hubble constant - neutrino connection

ACDM: A good fit to the data:

A mixture of

- baryons, and Cold-Dark-Matter (CDM)
- vacuum energy (Λ)
- photons and 3 light neutrinos
- ~scale-invariant initial fluctuations

describes well our observations:

• Distances to objects vs. redshift (first evidence of Λ)

Supernovae are faint \Rightarrow far \Rightarrow acceleration $\Rightarrow \Lambda$

 $\log 1/Flux \propto \log distance^2$ vs. redshift z (SCP and HighZ: 1998)

Supernovae are faint \Rightarrow far \Rightarrow acceleration $\Rightarrow \Lambda$

 $\log 1/Flux \propto \log distance^2$ vs. redshift z (SCP and HighZ: 1998)

Distance-density connection:

- Hubble law: Distance = redshift / expansion rate
- Large distances ⇒Small expansion rate (in past)
 - $\Rightarrow \text{acceleration}$
- acceleration $\Rightarrow \Lambda$ (GR)

4 3 5 4 3

ACDM: A good fit to the data:

A mixture of

- baryons, and Cold-Dark-Matter (CDM)
- vacuum energy (Λ)
- photons and 3 light neutrinos
- \sim scale-invariant initial fluctuations

describes well our observations:

• Distances to objects vs. redshift

ACDM: A good fit to the data:

A mixture of

- baryons, and Cold-Dark-Matter (CDM)
- vacuum energy (Λ)
- photons and 3 light neutrinos
- \sim scale-invariant initial fluctuations

describes well our observations:

- Distances to objects vs. redshift
- Expansion rate vs. redshift (deceleration \rightarrow acceleration)
- Statistics of Cosmic-Microwave Background (CMB) fluctuations
- Statistics of density fluctuations (galaxy counts) on large scales
- Gravitational lensing of backgrounds on foreground structure
- Gravitational formation of large objects (clusters of galaxies and maybe galaxies)

3

E 5 4 E 5

SNIa, CMB, BAO constraints on $(\Omega_M, \Omega_\Lambda)$

 $(\Omega_M,\Omega_\Lambda)=$ (matter,vacuum) densities relative to critical density $3H_0^2/8\pi \,G\sim 10^{-26} \rm kg\ m^{-3}$

Flat-ACDM parameters from CMB fluctuations

Planck 2015 (arXiv:1502.01589) (TT + LowP) Densities relative to critical density

- $\Omega_c = 0.315 \pm 0.013$
- $\Omega_{\Lambda}=1-\Omega_{\textit{M}}=0.685\pm0.013$
- $\Omega_b = 0.04904 \pm 0.0005$

plus

•
$$H_0 = 67.31 \pm 0.96$$

•
$$A_s = (21.95 \pm 0.79) \times 10^{-10}$$

Amplitude of primordial scalar perturbations

•
$$n_s = 0.9655 \pm 0.0062$$

spectral index for scalar perturbations

•
$$\tau = 0.078 \pm 0.019$$

optical depth to last-scattering surface (reionization)

(B)

The density of the universe vs. time in ΛCDM

log(time)

- 一司

A good fit, but many unanswered questions

- Does the value of the vacuum energy density have an explanation? $(\rho_\Lambda\sim 0.7\times 10^{-26}~{\rm kg\,m^{-3}})$
- What is the CDM? (Wimps, axions, sterile neutrinos. primordial black holes)
- Why are there baryons but no anti-baryons? (CP violation)
- What generated inflation and scale-invariant fluctuations?
- What came before inflation?
- Is General Relativity the correct way to gravitate on large scales?

The relics of an earlier time (standard story)

Particle and nuclear physics generated the species

- CDM (freeze-out of some new stable species)
- Baryon-anti-baryon asymmetry (CP violation)
- Nuclei: ¹*H*, ²*H*, ³*He*, ⁴*He*.....

Inflation generated the fluctuations

- gravitational waves (not yet detected)
- \bullet density perturbations \Rightarrow sound waves

The relics of an earlier time (standard story)

Particle and nuclear physics generated the species

- CDM (freeze-out of some new stable species)
- Baryon-anti-baryon asymmetry (CP violation)
- Nuclei: ¹*H*, ²*H*, ³*He*, ⁴*He*.....

Inflation generated the fluctuations

- gravitational waves (not yet detected)
- \bullet density perturbations \Rightarrow sound waves

The study of the relic sound waves provides the most solid foundation of ΛCDM cosmology

- BAO: density correlations at *z* < 3. BAO= Baryon Acoustic Oscillations
- CMB: Anisotropy spectrum

Frozen waves on last-scattering surface

Propagation of a baryon-photon sound wave

11 / 28

Enhanced correlation at $r_d = 147.5$ Mpc

A slice of the nearby universe (z < 0.14) from the Sloan Digital Sky Survey (SDSS)

Much interesting structure on scales < 100 Mpc. But no obvious sign of a preferred length \Rightarrow statistical analysis

E 6 4 E 6

Enhanced correlation at $r_d = 147.5$ Mpc

Galaxy-galaxy correlation function in three redshift ranges:

Transverse (angular) direction Radial (redshift) direction

BAO peak=ruler written on the sky (almost too good to be true!)

Frozen waves on our redshift= 1070 surface Planck all-sky temperature map:

 $T_0(1 - 10^{-5})$ $T_0(1 + 10^{-5})$ $T_0 = 2.728$ K

Looks like a mess, but the wavelength spectrum is very suggestive.

$$\mathcal{T}(\theta,\phi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta,\phi) \qquad \qquad \ell \sim D(z=1070)/\lambda$$

Harmonic spectrum of CMB, $C_{\ell} = \langle a_{\ell m} \rangle$

Peaks correspond to modes that were at an amplitude extrema at z = 1070; they have wavelengths that are harmonics of r_d .

 $\lambda \sim r_d/n$ corresponding to $\ell \sim D(z=1070)/\lambda$

• Peak heights tell us about composition of the universe at z = 1070.

• Angular scale tells us how far the z = 1070 surface is from us.

Temperature correlation function

Large correlations for $\theta < 2r_d/D(z_{rec})$ Small (primordial) correlations for $\theta > 2r_d/D(z_{rec})$

Anisotropy spectrum shape $\Rightarrow (\Omega_M h^2, \Omega_b h^2)$

The (simplified) primary effects [Hu et al. 2001 ApJ 549, 669]:

- $(\ell < 30) \Rightarrow A_s$ (primordial fluctuations)
- $Peak1/(\ell < 30) \Rightarrow \Omega_M h^2/\Omega_R h^2$ (radiation driving)
- even peaks/odd peaks $\Rightarrow \Omega_b h^2 / \Omega_M h^2$ (baryon loading)

Anisotropy spectrum \Rightarrow flat- Λ CDM parameters

Spectrum shape (relative peak heights) gives ρ_M/ρ_γ , ρ_B/ρ_γ $\Rightarrow \Omega_M H_0^2$, $\Omega_b H_0^2$

 \Rightarrow r_d can be calculated = 147.33 \pm 0.49Mpc

Position of first peak: $\ell_1 \sim 200 \sim D(z = 1060)/r_d$ Calculating r_d then determines $D(z = 1070) \Rightarrow H_0$

Flat ACDM: CMB is enough

Planck 2015 (arXiv:1502.01589) (TT + LowP)

•
$$\Omega_M = 0.315 \pm 0.013$$

•
$$\Omega_{\Lambda} = 1 - \Omega_{M} = 0.685 \pm 0.013$$

•
$$\Omega_b h^2 = 0.02222 \pm 0.00023$$

plus

•
$$H_0 = 67.31 \pm 0.96$$

•
$$A_s = (21.95 \pm 0.79) imes 10^{-10}$$

Amplitude of primordial scalar perturbations

•
$$n_s = 0.9655 \pm 0.0062$$

spectral index for scalar perturbations

•
$$\tau = 0.078 \pm 0.019$$

optical depth to last-scattering surface (reionization)

Non-flat ACDM: CMB not enough

Distance to z = 1090 now depends also on curvature:

One BAO measurement at an intermediate redshift is sufficient to impose flatness: $\Omega_k \equiv (1 - \Omega_M - \Omega_\Lambda) = 0.0008 \pm 0.004$

BAO Peak $\Rightarrow D_M(z)$ and c/H(z)

Galaxy positions are found in (z, θ, ϕ) space, For an ensemble of galaxies near redshift z, the BAO peak in the correlation function in the radial direction is at

$$\Delta z_{BAO} = \frac{r_d}{c/H(z)}$$

and in the transverse direction at
$$|\Delta \vec{\theta}_{BAO}| = \frac{r_d}{D_M(z)}$$

Using CMB-calibrated value of r_d and the measured values of Δz_{BAO}

and $|\Delta \vec{\theta}_{BAO}|$ determines $D_M(z)$ and c/H(z).

~ //

Two BAO Hubble diagrams $D_M(z)/r_d$ vs. z

The (only) problem with BAO: not enough nearby galaxies to measure the correlation function at z < 0.1

BAO $H(z) \Rightarrow$ deceleration \rightarrow acceleration

ACDM prediction

Data not precise enough (yet)

The SNIa Hubble diagram: $z \rightarrow 0$

Two methods to calibrate Luminosity_{la}:

- Top-down: match SNIa distances to BAO distances.
- Bottom-up: distance ladder to nearby SNIa .

Top-down: the BAO and SNIa Hubble diagram

Bottom up: $v = H_0 D$ (D from distance ladder) H₀ = 72 (± 3)_r [± 6]_s The most recent measurements with SNIa standard candles: $H_0 = (73.0 \pm 1.8) \text{km s}^{-1} \text{Mpc}^{-1}$ (Riess et al, arXiv:1604.01424)

• $Flux_{SNIa} = Luminosity_{SNIa}/4\pi D^2;$

100

• Luminosity_{SNIa} calibrated in nearby galaxies with Cepheids Cepheids: a type of variable star:

150

 Luminosity_{Cepheids} calibrated using nearby Cepheids of known distance in Milky Way, LMC, NGC4258 (geometric methods)

50

0

0

26 / 28

$H_0 \sim 73$ instead of ~ 68 ?

- \Rightarrow Sound horizon r_d shorter than we calculated.
- \Rightarrow Less time between inflation and Recombination
- \Rightarrow Faster expansion between inflation and Recombination
- \Rightarrow Higher energy density between inflation and Recombination One solution: add another species of neutrinos:

$$\begin{split} \text{Planck} &+ H_0:\\ N_\nu &= 3.41 \pm 0.22\\ H_0 &= 70.4 \pm 1.2\\ \text{suggesting } (2\sigma!) \text{ a fourth neutrino}\\ \text{species that is not completely}\\ \text{thermalized.} \end{split}$$

4 E N 4 E N

ACDM: Conclusion

- The model fits the data with a few $\sim 2\sigma$ discrepancies.
- Its lack of a firm theoretical foundation will continue to encourage searches for alternatives: Modified gravity, backreaction, inhomogeneous models
- Future observations aim to see if the same ACDM model that explains large scales also completely explains the growth of structure.

spectroscopic surveys: DESI, Euclid (space), SKA (21cm) photometric surveys: LSST

E 5 4 E 5