

Ruben Conceição

for the Pierre Auger Collaboration

LHC days, Split, September 23rd 2016

Cosmic ray energy spectrum

Cosmic ray energy spectrum

Cosmic ray energy spectrum

- Opportunity to understand highenergy Universe
 - Production (sources; acceleration mechanisms...)
 - Propagation (Magnetic fields...)
- Opportunity to test particle physics at energies above the LHC
 - High-energy interactions
 - E = 10¹⁹ eV => sqrt(s) ~ 130 TeV
 - Different kinematic regimes
 - E_{beam} up to 10⁸ TeV

1 km⁻² century⁻¹

3 TeV

Pierre Auger Observatory

Pierre Auger Observatory

• ~ 1600 Surface Detector (SD) Stations

1.5 km spacing

• 3000 km²

Low energy extension

- Aim to $E \approx 10^{17} \text{ eV}$
- AMIGA
 - Denser array plus muon detectors
- HEAT
 - 3 additional FD telescopes with a high elevation FoV

Pierre Auger Collaboration

16 countries, ≈ 90 institutions, ≈ 500 authors

What is measured?

What is measured?

What is measured?

μ

• Inclined events

Fluorescence Detector

- Measure directly muons at ground
- Muon Production Depth (MPD)
 - Use arrival time at ground plus shower geometry to reconstruct the muon production profile

e.m.

Hybrid technique advantages

- Calibration of SD with FD
 - FD provides a quasicalorimetric energy measurement
- Improve geometry reconstruction
 - For hybrid events
- Different insights of the shower
 - Access different shower components
 - Test shower consistency

Pierre Auger Observatory Results

A small selection of the observatory results

UHECRs Energy Spectrum

I. Valiño for the Pierre Auger Coll., Proc. 34th ICRC (2015)

UHECRs Energy Spectrum

GZK effect

Two possible scenarios

Pure proton or Fe nuclei at source

Cutoff caused by GZK or photodisintegration

Mixed composition at source

Cutoff caused by source energy exhaustion

The UHECR composition is essential to understand the spectrum features cause

Nature of UHECRs

Depth of the shower maximum

Phys.Rev. D90 (2014) 12, 122006

- Interpretation of the X_{max} distribution in terms of mass composition
 - Proton showers have in average deeper X_{max} than iron induced showers
 - X_{max} fluctuates more for proton induced showers

Mass composition interpretation

Phys.Rev. D90 (2014) 12, 122006

- Interpretation of the X_{max} distribution in terms of mass composition
 - Depends on the performance of hadronic interaction models
 - Mostly proton at low energies
 - Intermediate mass states at the highest available energies
 - Nearly no iron

Particle physics related measurements

Proton-air cross-section

R. Ulrich for the Pierre Auger Coll., Proc 34th ICRC (2015)

- X_{max} distribution tail is sensitive to the primary cross-section
- If there is enough proton it is possible to measure the p-air cross-section at very high energies

Proton-air cross-section

R. Ulrich for the Pierre Auger Coll., Proc 34th ICRC (2015)

- X_{max} distribution tail is sensitive to the primary cross-section
- If there is enough proton it is possible to measure the p-air cross-section at very high energies
- Measurement performed at:
 - $E = 10^{17.90}, 10^{18.22} \,\mathrm{eV}$
 - − √s = 38.7, 55.5 TeV
- Using Glauber theory is possible to translate this result into p-p cross-section

Muon content in air showers

- Muon EAS content is directly related with the hadronic shower component
- Through inclined showers is possible to measure directly the muon content (R_µ) in the SD
 - Electromagnetic shower
 component gets attenuated

Phys.Rev. D91 (2015) 3, 032003

Muon content in air showers

Phys.Rev. D91 (2015) 3, 032003

- Mean muon number compatible with iron showers within systematic uncertainties
- Combination of the R_{μ} with X_{max} shows tension between data and all hadronic interaction models

Explore hybrid events

 Combined fit of energy scale (R_E) and hadronic component rescaling (R_{had})

 $S_{
m resc}(R_E,R_{
m had})_{i,j}\equiv R_E\;S_{EM,i,j}\!+\!R_{
m had}\;R_E^{lpha}\;S_{
m had,i,j}$

- Findings:
 - No need for an energy rescaling
 - Hadronic signal in data is significantly larger with respect to simulations

Model	R_E	$R_{ m had}$
QII-04 p	$1.09 \pm 0.08 \pm 0.09$	$1.59 \pm 0.17 \pm 0.09$
QII-04 Mixed	$1.00 \pm 0.08 \pm 0.11$	$1.61 \pm 0.18 \pm 0.11$
EPOS p	$1.04 \pm 0.08 \pm 0.08$	$1.45 \pm 0.16 \pm 0.08$
EPOS Mixed	$1.00 \pm 0.07 \pm 0.08$	$1.33 \pm 0.13 \pm 0.09$

Accepted in Phys. Rev. Lett.

Muon Production Depth

Phys.Rev. D90 (2014) 1, 012012

Muon Production Depth $\langle X^{\mu}_{max} \rangle [g/cm^2]$ protor Sensitive to composition Mean X_{max} and X^{μ}_{max} should give 550 the same average mass 500 composition 450 iron EPOS-LHC fails to provide a consistent solution 400 2×10^{19} • X_{max}^{μ} In(A) ▲ X_{max} QGSJetll-04 Fe An Fe (InA) Fe 2.6 Ν He 0.7

10¹⁹

E [eV]

10¹⁸

р

10²⁰

10¹⁸

р

10¹⁹

E [eV]

20

10²⁰

Testing exotic scenarios

Accepted in Phys. Rev. D, arXiv:1609.04451

- Put the strongest limits on the existence of ultrarelativistic magnetic monopoles
 - Test on fundamental
 particle physics exotic
 scenarios
 - Relics of phase transitions in the early universe
 - MM produce air showers with a distinct signature from standard ones
 - $E_{mon} \approx 10^{25} \,\mathrm{eV}$
 - $M_{mon} \in [10^{11}; 10^{16}] \,\mathrm{eV/c^2}$

The future of the Observatory

Fraction of Cherenkov tanks in operation

- Observatory is running smoothly and its operation was approved until 2025
- Upgrade to measure separately the e.m. and muonic shower component at the ground

The future of the Observatory

• Auger PRIME

- "Primary cosmic Ray Identification through Muons and Electrons"
- Two complementary detectors:
 - Scintillator on top of the tank: signal dominated by e.m. component
 - WCD sensitive to e.m. + muons

— The goal:

- Enhance primary identification
- Improve shower description
- Reduce systematic uncertainties

Summary

- UHECRs measured at Pierre Auger Observatory
 - Opportunity to study the high-energy Universe and Particle Physics at the highest energies
- Pierre Auger Observatory has delivered many important results
 - GZK-like suppression established
 - Complex primary mass composition scenarios
 - Current hadronic interaction models not able to describe consistently the air shower observables
- Upgrade: Auger PRIME
 - Measure independently the e.m. and muonic component at ground

Pierre Auger Observatory

A big observatory with a huge physics discovery potential

Acknowledgments

BACKUP SLIDES

Neutrino and photon limits

C. Bleve for the Pierre Auger Coll., Proc 34th ICRC (2015)

Neutrino limits

Photon limits

Combined spectrum + comp fits

A. di Matteo for the Pierre Auger Coll., Proc 34th ICRC (2015)

Hybrid Technique

Depth of Shower Maximum (X_{max})

Phys.Rev. D90 (2014) 12, 122005

- Average X_{max} and its RMS consistent with a lighter(heavier) composition at lower(higher) energies
- Change on elongation rate around log(E/eV) = 18.2

Muon content in air showers

Phys.Rev. D91 (2015) 3, 032003

Combination of the number of muons R_{μ} with X_{max} reveals tension between data and all hadronic interaction models