

U

Why we want new PDFs for event generators

- Many kinematic effects at NLO come from just the NLO PDFs
- PDF errors only work for NLO
 - We make assumptions when calculating PDF uncertainties the standard way

$$f_{LO}(x,Q) \times \frac{f_{NLO,error}(x,Q)}{f_{NLO,central}(x,Q)}$$

 UE models described well by LO PDF, which is very different from NLO

Some high pT processes behave poorly with ordinary NLO PDFs

					ľ	K=NLO/	LO		
									1/614
	Туріе	al scales	PV2	evatron K-factor			LIC K-factor		
Process	μ_0	μ_1	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	$\mathcal{K}'(\mu_0)$	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	$\mathcal{K}'(\mu_0)$	
W W+1jet W+2jets WW+jet tt tt tlijet bb Higgs Higgs via VBF Higgs + 1jet Higgs + 2jets	т _W т _W т _W т _t т _t т _H т _{II} т _{II}	$2m_W$ p_T^{jet} p_T^{jet} $2m_W$ $2m_t$ $2m_t$ $2m_t$ $2m_t$ p_T^{jet} p_T^{jet} p_T^{jet} p_T^{jet} p_T^{jet}	1.33 1.42 1.16 1.19 1.08 1.13 1.20 2.33 1.07 2.02 -	1.31 1.20 0.91 1.37 1.31 1.43 1.21 - 0.97 -	1.21 1.43 1.29 1.26 1.24 1.37 2.10 2.33 1.07 2.13 -	$1.15 \\ 1.21 \\ 0.89 \\ 1.33 \\ 1.40 \\ 0.97 \\ 0.98 \\ 1.72 \\ 1.23 \\ 1.47 \\ 1.15$	1.05 1.32 0.88 1.40 1.59 1.29 0.84 - 1.34 - -	1.15 1.42 1.10 1.42 1.48 1.10 2.51 2.32 1.09 1.90 -	

Requirements for LO* PDFs

- LO as $x \rightarrow 0$; $\rightarrow NLO$ as $x \rightarrow 1$
- universal and reasonable
- Allows for sensible error PDFs:
 - similar Sudakov form factors
 - PDF re-weighting makes sense
- describes UE @TeV with a tune similar to CTEQ6L (for convenience) and extrapolates to a *reasonable* UE at the LHC

Differences between LO and NLO partons?

MRSTL0*

- incorporate many of previous points
- relax the momentum sum rule (114%) and achieve a better agreement (than MRST L0 pdf's) with some important LHC benchmark cross sections
- Available in LHAPDF

CTEQ variations

- INCLUDE IN LO* FIT (WEIGHTED) PSEUDO-DATA FOR CHARACTERISTIC LHC PROCESSES PRODUCED USING CTEQ6.6 NLO PDF'S WITH NLO MATRIX ELEMENTS (USING MCFM)
- Try 2-loop or 1-loop $\boldsymbol{\alpha}$
- Fixed momentum sum rule, or not
 - re-arrange momentum within proton and/or add extra momentum
 - extra momentum appreciated by some of pseudo-data sets but not others and may lose some useful correlations
- Fix pseudo-data normalizations to K-factors expected from higher order corrections, or let float
- Scale variation within reasonable range for finetuning of agreement with pseudo-data
 - vector boson scale varies from 0.5 m_B to 2.0 m_B

Results: gluon distribution

Candidate pdf titled fixed scales tries to fit pseudo-data
Larger than CTEQ6L at high x, but smaller at low x
With 110% momentum in proton, gluon is larger at high x
Including the pseudo-data in the fit increases the high x gluon even more

Focus on small-x

Desired Perturbative Variations for Shower Uncertainty

- Radiation functions
- Evolution variables
- Phase space mapping
- Internal scales
- • •

Skands/Giele/Kosower VINCIA is the closest match to this

VIRTUAL NUMERICAL COLLIDER WITH INTERLEAVED ANTENNAE

Gustafson, PLB175(1986)453; Lönnblad (ARIADNE), CPC71(1992)15. Azimov, Dokshitzer, Khoze, Troyan, PLB165B(1985)147 Kosower PRD57(1998)5410; Campbell,Cullen,Glover EPJC9(1999)245

- > Based on Dipole-Antennae
 - Shower off color-connected pairs of partons
 - 3 different shower evolution variables:
 - pT-ordering (= ARIADNE ~ PYTHIA8)
 - Dipole-mass-ordering (~ but not = PYTHIA6)
 - Thrust-ordering (3-parton Thrust)
 - family of antenna functions
 - Shower cutoff contour: independent of evolution variable
 - Several different choices for α_s
 - (evolution scale, p_T , mother antenna mass, 2-loop, ...)
 - Different phase space mappings:
 - Antenna-like (ARIADNE angle) or Parton-shower-like

12 Giele, Kosower, PS : hep-ph/0707.3652 + Les Houches 2007

Different Finite pieces VINCIA in Action

- Can vary
 - evolution variable, kinematics maps, radiation functions, renormalization choice, matching strategy
- After 2nd order matching
 - Non-pert part can be precisely constrained.

(will need 2nd order logs as well for full variation)

NLO and Parton Showers

Piece of a parton shower prediction

Methods for including PS corrections to NLO predictions must remove the overlap

Highly non-trivial: can depend on subtraction method, shower, etc.

In some cases, already
 covered by ME
 corrections in
 showers

Modeling the SM in practice

- Discussed importance of PDFs, NLO ...
- In practice, we try to use the data to calculate all orders, pert and non
- Data(Y) = MC(Y)/MC(X) * Data(X)
 - Other theoretical developments are used mainly for cross checks or to model signals
- Like mixing cocktails or making sausage

Tools: ME calculators

 $\alpha_s^4 + O(\alpha_s^5), \alpha_s \sim .12$

+ parton showers

 $\alpha_s \ln\left(\frac{p_T}{Q}\right) \left(\ln\left(\frac{p_T}{Q}\right) + 1\right) + O\left(\alpha_s^N \ln^{2N, 2N-1}\right)$

Tools: NLO

$\alpha_s(\infty+O(1)-\infty+O(1))$

 $W + 4p \rightarrow W + 4j + \text{softer stuff}$ 19

Example of a Cross Check

How well do we understand the Standard Model (@ high pT)?

Particle content is 'known' (*)

- Parameters of L_{int} measured with some precision $^{(\ast\ast)}$
- No sufficiently significant discrepancies between predictions and data
- It seems to work very well ... how
 well?
- (*) Higgs boson? (**) Neutrino masses?

The Framework

Define high-p_t objects reconstructed in experiment (CDF in this case)

Generate-Simulate Monte Carlo events and reconstruct same objects

Introduce a correction model (fakes, K-factors, uncertainties) and refine

Compare counts and shapes in different final states

Event Selection

Objects identified:

e, μ , τ , jet, b-jet, γ , Missing E_{τ} Consider **objects** of $p_{\tau} > 17$ GeV Select events with any of the following: e, $p_{T} > 25 \text{ GeV}$ μ , p_T > 25 GeV γ , $p_{T} > 60 \text{ GeV}$ jet, $p_{\tau} > 40 \text{ GeV}$ or 200 GeV additional diobject triggers

Final State: 1a 1b 1pmiss

1 high-P_T object "a"+ any number low-P_T 1 high-P_T object "b"+ any number low-P_T Significant missing -P_T

a

CDF Run II Preliminary (2.0 fb⁻¹) The calculation of σ accounts for the trials factor.

The case of a control of	n 5 64550		e lacion					Final State	Data	Background τ	
Final State	Data	Background	σ	Final State	Data	Background	σ	jµ≐ç∓ø	32	32.2 ± 10.9 D	
be ⁺ #	ธะก	4177 + 4.2	-27	2 ja nign-2 jap 2 of low New	114	80.9 ± 0.8 70.5 ± 100 P	0	j⊭≑⊭∓n	14	$11.5 \pm 2.6 = 0$	
	1871	1217.6 ± 18.3	± 2.2	2p m - 2pT	18	18.3 ± 101a	ő	jµ=', +	435.2	$4271.2 \pm 185.4 - 0$	
$\mu^{\pm}\tau^{\pm}$	63	35.2 ± 2.8	+1.7	$2 \cos^{\pm}$	142	144.8 ± 5.7	õ	μ^{\pm}	77689 1	76997.5 ± 930.2 0	
ի2յ≱ հigh-չյր⊤	255	327.2 ± 8.9	-1.7	27.1	908	980.3 ± 33.7	ŏ	نېزه ≕ ي	208	830.5 ± 13.2 D	
$2i_7 \pm Jow - \Sigma v_T$	574	670.3 ± 3.6	-1.5	2	71304	78021.4 ± 596.9	0	×≡ 4jγ	25	29.2 ± 3.6 D	
3j7 ± low-Σpr	: 48	199.8 ± 5.2	-1.4	$2i_{\mu} \pm \sqrt{\mp}$	16	193 ± 22	0	e=4j _	18750	14740 4 4 800 5 D	
$e^{\pm}\psi\tau^{\pm}$	86	17.2 ± 1.7	+1.4	2° µ = #	17927	18340.6 ± 201.9	υ	ջ= յյշ+			
2jy ¹⁺ , ∓	8.8	62.1 ± 4.8	-1.8	2. µ ~ rst	31	¥7.7 ⊥ 7.7	υ	e=3j≉	2		1.1
s [≟] tj	741710	764832 ± 6447.2	-1.3	2 بر 2	57	58.2 ± 13	υ	e≡ajγ	<u> </u>	YY TIN	ηαι στάτροι Ι
j 2 7 ¹	105	150.8 ± 6.3	-1.2	2 µ ⁺ ↓ ∓ ∌	11	7.8 ± 2.7	υ	a= 3 j			
a±2j	256946	249148 ± 2201.3	+1.2	$2^{\pm}\mu^{\pm}\mu^{\mp}$	956	$924.9 \pm 5^{\circ}.2$	0	$e^{\pm 2\gamma}$			
2 bj low- Σp_T	279	352.5 ± 11.9	-1.1	$2:\mu^{\pm}$	22461	23111.4 ± 366.6	0	$e^{\pm 2j\tau \pm \tau}$	a	INT N1	r information
$j_T^{\pm} \log \Sigma p_T$	1365	1525.8 ± 15	-1.1	$2e^{\pm i}$	14	13.8 ± 2.3	υ	a=gj⊽+	u		
262j low-Σpr	:08	153.5 ± 6.8	$^{-1}$	2e - e -	20	17.5 ± 1.7	υ	e= 2jø			
Þņ≛≉	328	613.5 ± 8.7	-0.9	2e ⁻	32	49.2 ± 3.4	υ	$e^{\frac{1}{2}2j\gamma}p$			
μ [±] 7 π	328	611 ± 12.1	0.8	2և հմ <u>ջ</u> ե-Շթ <u>-</u> բ	606	689 ± 3.4	0	$*=2j\gamma$	398	$342.8 \pm 15.7 = 0$	
2by	108	70.5 ± 7.9	+0.1	$2h \log 2p_T$	323	813.2 ± 10.3	n	e−2jμ±≱	22	14.5 ± 1.9 D	
8) 71	14	13.1 ± 1.4	0	$2b3j \log \Sigma_{PT}$	58	57.4 ± 3.5	0	e=2jµ+	23	15.5 ± 2 0	
r) Ri	- La 683	856.7 ± 37.3	0	2D2 $C(g - 2)$	118	$80.8.3 \pm 12.7$	0	0=+±	137	387 ± 53 0	
51	3157	31^{7} b. 7 ± 67.1	Ŭ ·	The state of the s	32	30.7 ± 5.3	n	e=++	1333	$1268 \pm 12.3 = 0$	
4j high-Σρ _T	83546	89096.6 ± 935.2	0	and the second	4	17.8 ± 1.9	ŏ	e /m =	109	$136.1 \pm 2.7 = 0$	
4j low- Σp_T	14872	14509.0 ± 180.3	0	A CONTRACTOR	22	21.8 ± 2	õ	*= p	960826	958579 ± 3077.7 D	
4j2~	46	46.4 ± 3.9	0	21	9	14.4 + 2.1	ñ	$e = \gamma p$	497	436.8 ± 10.3 D	
4jσ± high-lipπ	229	26.6 ± 1.7	D	21	1.1.1	967.1 ± 18.2	ñ	$e = \gamma$	3578	3539.9 ± 24.1 0	
$4j_7 \pm low - \Sigma \mu_T$	48	88.1 ± 3.8	0	21	26	81.3 ± 3.1	0	e= µ ± p	31	$29.9 \pm 1.6 = 0$	
4) f high-21pT	1084	1012 ± 62.9	D	26.	71	54.5 ± 7.1	Ω	e= 4 + 10	109	$99.4 \pm 2.4 = 0$	
4j•••	19	10.8 ± 2	0	2bjµ⊥r	12	10.7 ± 1.9	0	°_ " ±	4.5	28.5 ± 18 0	
4j~j0 Aim	7962	104.2 ± 22.4 9271.9 ± 245.1	0	26e#2jø 🎽	30	27.3 ± 2.2	0	*- + ² T	350	313 ± 54 0	i)th t
$A_{1}^{*} = A$	3.7.4	590.5 ± 13.6	n	26а≢2ј	73	66.5 ± 3.9	0	e- 27 - ±	13	$16.1 \pm 3.9 = 0$	
$4in \equiv \sqrt{1}$	34	48.4 ± 6.2	0	2be≛¢	22	19.1 ± 2.2	11	s=; r+	366	$415 \pm 16.9 = 0$	
$4i_{\mu} =$	1363	1350.1 ± 37.7	ň	ئەرز† ⊐ىيا2	19	19.4 ± 2.2	Ω		100	152.9 ± 3.5 U	
Si high-Yruw	159926	159143 ± 1061.9	ŏ	≌bs≖j	63	63 ± 3.4	0	e=+	6.5	94.0 ± 4.4 U	
3j low-Dpy	62681	64213.1 ± 496	ō	26e-	96	92.1 ± 9.1	0	e 107	10140	8.8 ± 1.0 U	
3j27	161	177.5 ± 7.1	0	T [±] T ⁺	856	872.5 ± 19	0	*-1p	121431	121025 ± 147.6 0	
-3j≠± high-Σp∽	68	76.9 🕹 3	0	10	3793	3770.7 ± 127.3	0	$e = \gamma p$	1260	192.0 ± 10.9 0	
3jø high-Σpr	1706	1899.4 ± 77.6	0	AL AL	-	440.9 ± 7.3	0	ε=;γ =:+	1368	20 H 1 20 B	
3jp low-Σp-	-12	36.2 ± 5.7	0			1.7 ± 3.4	0	a = 1	9.2	33 ± 29 0	
3j~7 **		a ± 3.6	0			+ 2	0	a = 3 = 4	10		
Jj∼p Si∝	24639	210				4823.5	. 0	2=1,0 =1,0=±	19	Taz II	
$a_{1n} = a$	2584	2971		- n	ЯI	2	0	x= x 4;	142		
810 - 26	10	3.6 +			u c		0	2=2=31	17		
$\frac{3}{3}$	15	7.9 ± 3				/	0	° ° 0j a=a−0jat			
$\sin^{\pm} \pi$	175	177.8 +		ctat		•	0	$a = a = \frac{1}{2}$		1 0	
ain=	5022	$4889.5 \pm$		Slai	こしい		ö	·= ·= ·;	/		
3b2j	23	28.9 ±				_	1	x = x = -1			
Sloj	8.2	$82.6 \pm$		$d \sim f i$	no	4	0	$\kappa = \kappa^{-1} \phi$			
3b_	07	85.0 ±		UELT	IIE	U	0	$s = s = \frac{r}{2}$		$\alpha v \alpha n +$	C
27 [±]	468	512.7 ± 1				/	0	e = e = 1		EVEIL)
27) Ø 2-1	- 28	107.2 ± 6.1		by d	$\rightarrow +$		n	$e = e^{-\frac{1}{2}}$			
4γ 2i hish-Eum	9298 190772	$3904.6 \pm 40.$		$() \vee ()$	dI	-0	0	_=_= '	1		
2j low-Eng	165984	162530 ± 1581		~ <u> </u>			0	~= ~= `	ARAN		
2j2⊤ [⊥]	22	40.6 ± 3.2	0			2	0	ԵՕյ	51		
21270	11	8 ± 2.4	ō			5 1 2.5	0	b5j	237	132.5	
2123	380	581 ± 13.7	0		1	78828 ± 707.*	0	եմյ <u>ե</u> նցհ-Σթ-յ	26	$28.4 \pm 2.6 = 0$	
2j7≛ high-Σp∽	83	114.6 ± 3.3	0	γp	1/1	$1(1.1 \pm 3.)$	0	04) 10w-25DT しなしについて	19061	$52.7 \pm 15.9 = 0$ 19071 $\pm 94.1 = 0$	
				74 · 40	102	190 ± 99.8	u.	53] Low- Mar	2974	2878 ± 31 0	

G. Choudalakis, R. Culbertson, C. Henderson, B, Knuteson, Si Xie

Vista kinematic shapes

Quantitative Results

Event counts are distributed as you expect when you look at 399 final states

Largest discrepancy is a 2.7sigma deficit

Several % of all distributions disagree at the 1% level or higher

1% is typical of the systematic expected in event generators

about 6% of distributions have KS>1%, but there are many commonalities

Sample discrepant distribution

Related discrepant distribution

Many things described well!

Vista output

CDF Run II preliminary (927 pb⁻¹)

	Table	of	final	states
--	-------	----	-------	--------

(stat. uncertainty only)

Final State	Plots	Plots Observed Expected Discrepancy (0) SM composition		Discrepant Distributions (0)		
3j1tao+	[plots]	71	113.7 +- 3.6	-2.3	$ \begin{array}{l} Pythin [] = 0 < pT < 80 = 27.3, Pythin [] = 0 < pT < 91 = 18.2, Pythin [] = 18 < pT < 40 = 17.3, Pythin [] = 200 < pT < 500 = 17.7, Pythin [] = 100 < pT < 200 = 13.7, Pythin [] = 00 < pT < 120 = 6.8, Pythin [] = 100 < pT < 150 = 3.8, Pythin [] = 00 < pT < 100 = pT < 500 = 1.4, Pythin [] = 00 < pT < 500 = 0.7, Pythin [] = 00 < pT < 210 = 0.4, Pythin [] = 00 < pT < 500 = 0.7, Pythin [] = 00 < pT < 210 = 0.4, Pythin [] = 00 < pT < 500 = 0.7, Pythin [] = 00 < pT < 210 = 0.4, Pythin [] = 00 < pT < 500 = 0.7, Pythin [] = 00 < pT < 210 = 0.4, Pythin [] = 0.2, Pythin [] = 00 < pT < 0.2, Pythin [] = 00 < pT < 2.0, Pythin [] = 0.2, Pythin [] = 0.2, Pythin [] = 0.4, Pythin [] = 0.$	
5j	[plots]	1661	1902.9 +- 50.8	-1.7	Pythia jj +0 < pT < 50 = 685 5.,0ythia jj +0 < pT < 40 = 583 5.,0ythia jj +0 < pT < 40 = 426 5.,0ythia jj +0 < pT < 120 = 96 5.,0ythia jj +0 < pT < 40 = 12.,0ythia jj +10 < pT < 120 = 17.5,0ythia jj +10 < pT < 200 = 64.,0ythia jj +0 < pT < 120 = 61.,0wethid events = 55.,0ythia jj +10 < pT < 130 = 12.,0ythia jj +10 < pT < 200 = 0.7, Mindlivent #(-rev); m = 0.5.,0ythia jj +200 = 0.7, Mindlivent #(-rev); m = 0.5.,0ythia jj +200 = 0.5,1 kewag than = 0.2	manoj20j2_pt 1.1 masoj2) 6.7 masoj3)j3_pt_n 6.7 masoj2_j5] 4.4 masoj2_j5] 4.4 masoj2_j5] 4.2 masoj2_j5] 5 1.5 defteR(j2_j5) 1.5 defteR(j2_j5) 1.4 masoj2_j5_j6 (5) 3.3 masoj2] 2.8 masoj4)j4_pt_1 2.5
2j1tau+	[plots]	233	296.5 +- 5.6	-1.6	$ \begin{array}{l} Pythia j 40 < pT < 50 = 95.9, Pythia j 18 < pT < 41 = 57.2, Pythia j 40 < pT < 50 = 54.3, Pythia j 200 < pT < 300 = 70.9, Pythia j 18 < pT < 41 = 57.2, Pythia j 40 < pT < 500 = 54.3, Pythia j 200 < pT < 300 = 70.9, Pythia j 200 < pT < 200 = 9.0, Pythia j 200 < pT < 200 = 19.6, Pythia j 200 < pT < 100 = 0.0, Pythia j 200 < pT < 200 = 0.0, Pythia j 200 < pT < 200 = 0.0, Pythia j 200 < pT < 200 = 0.0, Pythia j 200 < pT < 200 = 0.0, Pythia j 200 < pT < 200 = 0.0, Pythia j 200 < pT < 200 = 0.0, Pythia j 200 < pT < 200 = 0.0, Pythia j 200 < pT < 200 = 0.0, Pythia j 200 < pT < 200 = 0.2, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 = 0.1, Pythia j 200 < pT < 100 $	mass(tot+j1,j2) 1.7 one Pr 3.5 mass(tot+j1,j2) 3 charteredObjectsRecoll.ptc 1.6 j1,pt 2.5
2j2tau+	[plots]	6	27 +- 4.6	-1.4	Pytkin ji 12 cpT < 00 = 11.7. Bytkin ji 40 cpT < 60 = 9.5. Pytkin ji 60 cpT < 90 = 4 1. Pytkin bj 40 cpT < 60 = 0.8. Pytkin ji 90 c pT < 120 = 0.7. Pytkin bj 13 cpT < 60 = 0.1	5.
lble+lj	[plots]	2207	2015.4 +- 28.7	+1.4	$ \begin{array}{l} Pythis [j = 0 < pT < 50 = 4115, Pythis [j = 0 < pT < 50 = 295.7, Pythis [j = 0 < pT < 50 = 2135, Pythis [j = 10 < pT < 40 = 1225.5, Pythis [j = 10 < pT < 40 = 1225.5, Pythis [j = 10 < pT < 40 = 1225.5, Pythis [j = 10 < pT < 40 = 1225.5, Pythis [j = 10 < pT < 40 = 1225.5, Pythis [j = 10 < pT < 40 = 1225.5, Pythis [j = 10 < pT < 40 = 125.5, Pythis [j = 10 < pT < 40 = 125.5, Pythis [j = 10 < pT < 40 = 125.5, Pythis [j = 10 < pT < 40 = 125.5, Pythis [j = 10 < pT < 40 = 125.5, Pythis [j = 10 < pT < 10 < pT < 10 = 25.5, Pythis [j = 10 < pT < 10 = 105.5, Pythis [j = 10 < pT < 10 = 25.5, Pythis [j = 10 < pT < 10 = 10.5, Pythis [j = 10 < pT < 10 < p$	mass(b)/b_pt 9.9 mass(b) 7.2 mass(p) pt 4.3 dd(mR(j,b) 4.1 mintMass(j) 3.9 mass(j,b) 3.6 mass(j,b) 3.6
3j_sumPt0-400	[plots]	35436	37294.6 +- 524.3	-1.1	$\begin{array}{l} Pythin [j \ 17 < pT < 00 = 13120 J, Pythin j \ 00 < pT < 50 = 12273.7, Pythin j \ 60 < pT < 90 = 3950.7, Pythin b \ 17 < pT < 00 = 1513, Pythin [j \ 10 < pT < 18 = 746, Pythin j \ 00 < pT < 60 = 1514, Pythin [j \ 10 < pT < 10 = 520.8, Pythin b \ 00 < pT < 90 = 175 J, Pythin [j \ 10 < pT < 10 = 520.8, Pythin b \ 00 < pT < 90 = 175 J, Pythin [j \ 10 < pT < 10 = 520.8, Pythin b \ 10 < pT < 90 = 175 J, Pythin [j \ 10 < pT < 10 = 520.8, Pythin [j \ 10 < pT < 10 = 153.8, Pythin [j \ 10 < pT < 10 = 520.8, Pythin [j \ 10 < pT < 10 = 175 J, Pythin [j \ 10 < pT < 10 = 15.7, Pythin [j \ 10 < pT < 12 = 7.9, Pythin [j \ 10 < pT < 10 = 2.8, Pythin [j \ 10 < pT < 10 = 2.8, Pythin [j \ 10 < pT < 10 = 2.8, Pythin [j \ 10 < pT < 12 = 2, Pythin [j \ 120 < pT < 150 = 2, Midlighter W] \ Pet \ [j] = 2, Midligent W(Pet) [j] = 2 \end{array}$	mintRataR() (19,9 mano()2,0) 9,9 dathaR()2,3) 9,9 dathaR()2,3) 9,9 mass()2)()2, pt 9,9
1e+3j1pmiss	[plots]	1954	1751.6 +- 42	+1.1	$ \begin{array}{l} \label{eq:start} W_1 \rightarrow ev_1(i) = 715.6, \mbox{Machivent} W_1 \rightarrow ev_1(i) = 575.3, \mbox{Machivent} W_1 \rightarrow ev_1(i) = 122.6, \mbox{Machivent} W_1 \rightarrow ev_1(i) = 63, \mbox{Pythas} W_1 \rightarrow ev_1(i) = 55.3, \mbox{Machivent} W_1 \rightarrow ev_1(i) = 63, \mbox{Pythas} W_1 \rightarrow ev_1(i) = 55.3, \mbox{Machivent} $	വഴങ്ങള്?);2_ല 1-4

Dissecting the SM cocktail

Much of the Monte Carlo is default Pythia/Herwig (simple processes + parton showers)

Some processes like W/Z/y+jets combine Matrix Elements with parton showers Such calculations are necessary for the LHC

We can remix our cocktail with different implementations of the Standard Model theory

Change W+4j model:Goodness of fit unchanged

"... All distributions show good agreement with the data ..."

What Next?

•Vista can be used as a "tuning" tool

- This is not why we entered this game
- Can we use this approach to probe beyond the Standard Model?

•We have a model of the Standard Model "cocktail" that is "okay"

- Discrepancies are in a "boring" kinematic region
- We are actively trying to understand these

Sleuth: a quasi-model independent search strategy for new physics

Exclusive final states

Large $\sum |p_{T}|$

An excess

Rigorously compute the trials factor associated with looking everywhere

 $\int_{0001001}^{today} d(hep-ph)(prediction)$

Goal of Sleuth Identify statistically significant excess of data in the high- Σp_{T} tails.

40

p-value and Pmin $d(events) / d(\Sigma p_T)$ SM prediction for some final state p-val. p-val. Sp-val. Σρ_τ data P-value == Pmin p-val.= Prob(>=0|b)expected b=5.4 p-val. observed o=6 $\sum_{\nu=d}^{\infty} \frac{b^{\nu}}{\nu!} \exp(-b)$

expected b=7.2 p-value observed o=7

Pmin calculation

$Pmin \rightarrow scriptP$

- How unusual is this Pmin?
- Generate pseudo-data to see how often this (or something more interesting) would happen.
 - Fraction == scriptP
- Smaller scriptP → more interesting

Trials Factor

Each final state → scriptP
N final states:
 tildeScriptP = 1 - (1-min{scriptP})^N

Prob. fluctuation in any region in any final state is as or more interesting scriptP → all regions tildeScriptP → all final states tildeScriptP < 0.001 → >3 sigma effect

Recap: Sleuth Algorithm

ScriptP = % of pseudo-experiments where this final state has any tail more interesting than the actual most interesting one.

TildeScriptP = % of pseudo-experiments that would produce any tail in any final state, that would be more interesting than the most interesting tail actually observed.

(top 5)

CDF Run II Preliminary (2.0 fb^{-1}) SLEUTH Final State \mathcal{P}

$\ell^+\ell'^+$	0.00055
$\ell^+\ell'^+ pjj$	0.0021
$\ell^+\ell'^+p$	0.0042
$\ell^+\ell^-\ell'\not\!$	0.0047
$\ell^+ \tau^+ p$	0.0065

8% of pseudo-Experiments should Be as interesting

No significant excess

This does not prove no new physics!

CDF Run II (1 fb⁻¹) Sleuth @CDFIIa result

SLEUTH Final State	\mathcal{P}	CDF Run II Prelin	$\frac{1}{10000000000000000000000000000000000$
$b\overline{b}$	0.0055	SLEUTH Final State	\mathcal{P}
j 🌶	0.0092	$\ell^+\ell'^+$	0.00055
$\ell^+\ell'^+ \not p_{jj}$	0.011	$\ell^+\ell'^+ pjj$	0.0021
$\ell^+\ell'^+\not\!$	0.016	$\ell^+\ell'^+p$	0.0042
τp	0.016	$\ell^+\ell^-\ell'p$	0.0047
		$\ell^+ au^+ p$	0.0065

A global analysis of 2 fb⁻¹ of CDF Run II data was performed

model-independent searches the bulk of distributions

Sleuth

quasi-model-independent searches the high- $\Sigma p_{\rm T}$ tails

No significant excesses in 2 fb⁻¹ Run II can provide 5x more data yet to be searched

The greatest limitation to this blind new physics search is mis-modeling of backgrounds

Note: this analysis does NOT incorporate PDF, showering uncertainties:

these are "fit" using correlations between different final states (e.g. K-factors from data)

Here is something that is not yet statistically significant, but is nonetheless suggestive.

If it is real, D0 should be able to confirm it, and push it over the discovery threshold.

Until that happens (or doesn't), this is an interesting case to consider as something possibly real.

http://www-cdf.fnal.gov/physics/exotic/r2a/ 20080228.vista_sleuth/publicPage.html

6

How would you understand this?

Different Views about New Physics

Shakespeare's writing style

- Develop a large vocabulary
- Play with words
- Invent new words and phrases
- Develop the common touch
- Read great literature
- Study the great orators, actors and the popular
- Live with passion
- -Write, write, write!!!

register for a password by clicking here

60

$$\begin{aligned} \mathcal{L}_{\rm FFV} &= \bar{f}' \gamma^{\mu} \left({\rm G}(1) \frac{1-\gamma_5}{2} + {\rm G}(2) \frac{1+\gamma_5}{2} \right) f V_{\mu}^* \\ \mathcal{L}_{\rm FFS} &= \bar{f}' \left({\rm GC}(1) \frac{1-\gamma_5}{2} + {\rm GC}(2) \frac{1+\gamma_5}{2} \right) f S^* \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{\text{VVV}} &= -i \mathbf{G} \quad \left\{ \begin{array}{l} (\partial_{\mu} V_{1\nu}^{*}) (V_{2}^{\mu*} V_{3}^{\nu*} - V_{2}^{\nu*} V_{3}^{\mu*}) \\ &+ (\partial_{\mu} V_{2\nu}^{*}) (V_{3}^{\mu*} V_{1}^{\nu*} - V_{3}^{\nu*} V_{1}^{\mu*}) \\ &+ (\partial_{\mu} V_{3\nu}^{*}) (V_{1}^{\mu*} V_{2}^{\nu*} - V_{1}^{\nu*} V_{2}^{\mu*}) \right\} \end{aligned}$$

$$\begin{split} \mathcal{L}_{\mathtt{VVS}} &= \mathtt{G} V_1^{\mu *} V_{2\mu}^* S^* \\ \mathcal{L}_{\mathtt{SSS}} &= \mathtt{G} S_1^* S_2^* S_3^* \qquad \qquad \mathcal{L}_{\mathtt{VSS}} = i \mathtt{G} V_{\mu}^* S_2^* \stackrel{\leftrightarrow \mu}{\partial} S_1^* \end{split}$$

The Actors

SSS	SSS	8	d	npm(1)	np₩	S	Xsss	31
ssf	ssf~	f	S	npm(2)	np₩	S	Xssf	32
szs	SZS	S	d	npm(3)	np₩	S	Xszs	33
szf	szf~	f	S	npm(4)	np₩	S	Xszf	34
sas	sas~	s	d	npm(5)	npW	S	Xsas	35
saf	saf~	f	s	npm(6)	npW	s	Xsaf	36
sbs	sbs~	s	d	npm(7)	npW	s	Xsbs	37
\mathbf{sbf}	sbf~	f	s	npm(8)	np₩	S	Xsbf	38
scs	scs	s	d	npm(9)	npW	S	Xscs	39
scf	scf~	f	S	npm(10)	npW	s	Xscf	40
oss	OSS	S	d	npm(51)	npW	0	Xoss	81
osf	osf~	f	S	npm(52)	npW	0	Xosf	82
ozs	OZS	s	d	npm(53)	npW	0	Xozs	83
ozf	ozf~	f	S	npm(54)	npW	0	Xozf	84
ssv	ssv	v	W	npm(55)	npW	5	Xssv	85
osv	osv	v	w	npm(56)	npW	s	Xosv	86
scv	scv~	v	w	npm(57)	npW	s	Xscv	87

The Grammar

sas	sas~	np_coupl_c(453) QNP
sbs	sbs~	np_coupl_c(455) QNP
SCS	scs~	np_coupl_c(457) QNP
u	scs~	np_coupl_cLR(261) QNP
u	scv~	np_coupl_rLR(41) QNP
Ъ	OSS	np_coupl_cLR(408) QNP
Ъ	OSV	np_coupl_rLR(27) QNP
b	OZS	np_coupl_cLR(418) QNP
Ъ	SSS	np_coupl_cLR(183) QNP
tss	tzs~	np_coupl_c(466) QNP
tzs	tzs^{\sim}	np_coupl_c(474) QNP
w+	scs~	np_coupl_c(438) QNP
	sas sbs scs u b b b b b b t s t s t z s t z s t z s	sas sas~ sbs sbs~ scs scs~ u scs~ b oss b osv b ozs b sss tss tzs~ tzs tzs~ w+ scs~

Table 1. Quantum numbers of scalar and vector leptoquarks with $SU(0) \times SU(2) \times U(1)$ invariant couplings to quark-lepting (V = Q_{ref} - T₂).

	Spin	₹ - 38 + L	su(3) _c	SU(2)∦	U(LIY
s.,	a	-2	3*	1	L J
5,	u	~Z	3*	1	4 5
5,	0	-2	3*	3	<u>1</u> 3
· .	1	-7	3.*	7	5
ĩ,	1	-2	3*	2	-16
٤.	a	0	2	2	$\frac{7}{5}$
\widetilde{E}_{4}	C	0	3	2	ł
υ,	1	0	3	1	2
Ũ,	1	0	а	1	
T,	1	0	3	3	23
	10				1277

Table 2. Couplings of scalar and vector leptoquarks to quark-lepton pairs. The subscripts L.R of the couplings refer to the lepton chirality.

	F = -2	, scal	ars	F = -2, x	ec tors
lerner:	54	5,	5,	۲.	v,
C, u	911,8	-	-7==	920	Ĩ.
VL A	-016		-936	g _{it}	
, d	-	ũ.,	-{Z y ₂₄	924,R	-
νī u	(1 -1)	-	12 yst		ă.
	F = C,	vector	s	F-0, so	alars
hanne 1	Ц,	ũ,	Ū,	Rz	ã,
GR 85	r.,	-	-84	- h ₁₆	ñau
v. 07	****	æ	n _{p1}	hau	
LA UE	-	ĥ	f2 has	h + 4, 4	1. * 1
2 1 -	040	-	12 h.	-	Fine.

$W^+ b \overline{b}$ Anomaly

Quaero: DØ, hep-ex/0106039

Process	€sig	Ъ	$N_{\rm data}$	$\sigma^{95\%} imes \mathcal{B}$
$WW \rightarrow e\mu \not \!$	0.14	19.0 ± 4.0	23	1.1 pb
ZZ → ee 2j	0.12	19.7 ± 4.1	19	0.8 pb
tt → eĘ⊤ 4j	0.13	$3.1\pm~0.9$	8	0.8 pb
$t\bar{t} \rightarrow e\mu F_T 2j$	0.14	0.6 ± 0.2	2	0.4 pb
$h_{175} \rightarrow WW \rightarrow e \not\!$	0.02	29.6 ± 6.5	32	11.0 pb
$h_{200} \rightarrow WW \rightarrow e \not \in_T 2j$	0.07	66.0 ± 13.8	69	4.4 pb
$h_{225} \rightarrow WW \rightarrow e \not \!$	0.06	43.1 ± 9.2	44	3.6 pb
$h_{200} \rightarrow ZZ \rightarrow ee 2j$	0.15	17.9 ± 3.7	15	0.6 pb
$h_{225} \rightarrow ZZ \rightarrow ee 2j$	0.15	18.8 ± 3.8	12	0.4 pb
$h_{250} \rightarrow ZZ \rightarrow ee 2j$	0.17	$18.1\pm~3.7$	18	0.6 pb
$W'_{200} \rightarrow WZ \rightarrow e \not\!$	0.05	27.7 ± 6.3	29	3.4 pb
$W'_{350} \rightarrow WZ \rightarrow e E_T 2j$	0.23	22.7 ± 5.2	27	0.7 pb
$W'_{500} \rightarrow WZ \rightarrow e \not\!$	0.26	2.1 ± 0.8	2	0.2 pb
$Z'_{350} \rightarrow t\bar{t} \rightarrow e E_T 4j$	0.11	18.7 ± 4.0	20	1.1 pb
$Z'_{450} \rightarrow t\bar{t} \rightarrow e\bar{\mu}_T 4j$	0.14	18.7 ± 4.0	20	0.9 pb
$Z'_{550} \rightarrow t\bar{t} \rightarrow e\bar{\mu}_T 4j$	0.14	$3.8\pm~1.0$	2	0.3 pb
$Wh_{115} \rightarrow e \not \!$	0.08	37.3 ± 8.2	32	2.0 pb
$Zh_{115} \rightarrow ee 2j$	0.20	19.5 ± 4.1	25	0.8 pb
$LQ_{225}\overline{LQ}_{225} \rightarrow ee 2j$	0.33	$0.3\pm~0.1$	0	0.07 рЬ

 $\log_{10}\left\{\frac{p(s+b)}{b}\right\}$ p(b)

BARD: Interpreting New Frontier Energy Collider Physics

Bruce Knuteson* MIT

Stephen Mrenna^{\dagger} FNAL

No systematic procedure currently exists for inferring the underlying physics from discrepancies observed in high energy collider data. We present BARD, an algorithm designed to facilitate the process of model construction at the energy frontier. Top-down scans of model parameter space are discarded in favor of bottom-up diagrammatic explanations of particular discrepancies, an explanation space that can be exhaustively searched and conveniently tested with existing analysis tools.

> Marmoset is a simplified way to do much the same thing

Obsolete?

R-hadron decay in the middle of CMS

- Hidden Valleys?
- Quirks?
- Fireballs?
- ...?

What can we expect at the LHC? Can we understand it?

Possible LHC Outcomes

Something so striking you can't miss it $Z' \rightarrow \mu^+ \mu^-$ $BH \rightarrow 100 Z/W/t/h$	~100 GeV particles with cascade decays
New exotica (quirks, hidden valley,)	Nothing (except marginal WW scattering)

Consequences

Easy Use sideband data as your "Monte Carlo" (probably something else to complete the picture)	Challenging (Control regions are all mixed up)
More Challenging Requires detailed understanding of SM (and detector) tails	Most Challenging When do you give up?

Conclusions

We are prepared for the challenging case. We can improve our current tools with manpower and some mindpower and understand cross sections @LHC

In CDF RunII data, a global test of our tools works very well in estimating counts, less so in kinematic distributions (about 6% have KS>1%)

Distribution problems are likely a deficiency of parton shower programs (all?) and appear at low scales (low m_j and low end of P_T) There is no indication (as yet) of new physics