# Analytical relativity modelling of coalescing compact binaries

#### Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS



# Outline

1 Gravitational wave source modelling

- **2** Post-Newtonian approximation
- **3** Black hole perturbation theory
- 4 Effective one-body model
- **6** Comparisons

# Outline

#### 1 Gravitational wave source modelling

- 2 Post-Newtonian approximation
- **3** Black hole perturbation theory
- 4 Effective one-body model
- **5** Comparisons

# Main sources of gravitational waves



### Need for accurate template waveforms



# Need for accurate template waveforms



### Need for accurate template waveforms



Lecture by M. A. Papa tomorrow morning

# A recent example: the event GW151226



[PRL 116 (2016) 241103]

# A long inspiral to merger to ringdown



[PRL 116 (2016) 241103]

# The first two/three detections



[gr-qc/1606.04856]

















• Induced quadrupole moment:  $Q_{ij} \sim R^5 \partial_i \partial_j U \sim R^5 (Gm/D^3)$ 



- Induced quadrupole moment:  $Q_{ij} \sim R^5 \partial_i \partial_j U \sim R^5 (Gm/D^3)$
- Induced quadrupolar force:  $F^i_{
  m quad} \sim m \, \partial_i ({Q \over r^3}) \sim R^5 (Gm^2/D^7)$



- Induced quadrupole moment:  $Q_{ij} \sim R^5 \partial_i \partial_j U \sim R^5 (Gm/D^3)$
- Induced quadrupolar force:  $F^i_{quad} \sim m \, \partial_i (\frac{Q}{r^3}) \sim R^5 (Gm^2/D^7)$
- For a compact body with  $R \sim Gm/c^2$ ,

$$\frac{F_{\mathsf{quad}}}{F_{\mathsf{Newt}}} \sim \frac{(G^6/c^{10})(m/D)^7}{Gm^2/D^2} \sim \left(\frac{Gm}{c^2D}\right)^5 \sim \left(\frac{v}{c}\right)^{10} \ll 1$$

# Outline

1 Gravitational wave source modelling

#### 2 Post-Newtonian approximation

**3** Black hole perturbation theory

**4** Effective one-body model

**5** Comparisons

### Small parameter

$$\varepsilon \sim \frac{\mathbf{v}_{12}^2}{c^2} \sim \frac{Gm}{r_{12}c^2} \ll 1$$



#### Small parameter

$$\varepsilon \sim \frac{\mathbf{v}_{12}^2}{c^2} \sim \frac{Gm}{\mathbf{r}_{12}c^2} \ll 1$$



#### Example



#### Small parameter

$$\varepsilon \sim rac{\mathbf{v}_{12}^2}{c^2} \sim rac{Gm}{r_{12}c^2} \ll 1$$



#### Example



#### Notation

*n*PN order refers to effects  $\mathcal{O}(c^{-2n})$  with respect to "Newtonian" solution

$$h^{lphaeta} \equiv \sqrt{-g}g^{lphaeta} - \eta^{lphaeta}$$

$$h^{\alpha\beta} \equiv \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}$$

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta}$$

$$h^{\alpha\beta} \equiv \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}$$

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta} \quad \iff \quad \begin{cases} \partial_{\alpha} h^{\alpha\beta} = 0 \\ \Box h^{\alpha\beta} = 16\pi |g| T^{\alpha\beta} + \underbrace{\Lambda^{\alpha\beta}[h]}_{\substack{\text{nonlinearities} \\ \partial h\partial h + \cdots}} \end{cases}$$

$$h^{\alpha\beta} \equiv \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}$$

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta} \quad \iff \quad \begin{cases} \partial_{\alpha} h^{\alpha\beta} = 0 \\ \Box h^{\alpha\beta} = 16\pi |g| T^{\alpha\beta} + \underbrace{\Lambda^{\alpha\beta}[h]}_{\text{nonlinearities}} \equiv 16\pi \tau^{\alpha\beta} \end{cases}$$

$$h^{\alpha\beta} \equiv \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}$$

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta} \quad \iff \quad \begin{cases} \partial_{\alpha} h^{\alpha\beta} = 0 \iff \partial_{\alpha} \tau^{\alpha\beta} = 0 \\ \Box h^{\alpha\beta} = 16\pi |g| T^{\alpha\beta} + \underbrace{\Lambda^{\alpha\beta}[h]}_{\text{nonlinearities}} \equiv 16\pi \tau^{\alpha\beta} \end{cases}$$

$$h^{\alpha\beta} \equiv \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}$$

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta} \quad \iff \quad \begin{cases} \partial_{\alpha} h^{\alpha\beta} = 0 \iff \partial_{\alpha} \tau^{\alpha\beta} = 0 \iff \nabla_{\alpha} T^{\alpha\beta} = 0 \\ \Box h^{\alpha\beta} = 16\pi |g| T^{\alpha\beta} + \underbrace{\Lambda^{\alpha\beta}[h]}_{\text{nonlinearities}} \equiv 16\pi \tau^{\alpha\beta} \end{cases}$$

$$h^{\alpha\beta} \equiv \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}$$

#### Einstein field equations

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta} \quad \iff \quad \begin{cases} \partial_{\alpha} h^{\alpha\beta} = 0 \iff \partial_{\alpha} \tau^{\alpha\beta} = 0 \iff \nabla_{\alpha} T^{\alpha\beta} = 0 \\ \Box h^{\alpha\beta} = 16\pi |g| T^{\alpha\beta} + \underbrace{\Lambda^{\alpha\beta}[h]}_{\text{nonlinearities}} \equiv 16\pi \tau^{\alpha\beta} \end{cases}$$

Weak-field approximation

$$|h^{lphaeta}|\ll 1$$

$$h^{\alpha\beta} \equiv \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}$$

#### Einstein field equations

$$G_{\alpha\beta} = 8\pi T_{\alpha\beta} \quad \iff \quad \begin{cases} \partial_{\alpha} h^{\alpha\beta} = 0 \iff \partial_{\alpha} \tau^{\alpha\beta} = 0 \iff \nabla_{\alpha} T^{\alpha\beta} = 0 \\ \Box h^{\alpha\beta} = 16\pi |g| T^{\alpha\beta} + \underbrace{\Lambda^{\alpha\beta}[h]}_{\text{nonlinearities}} \equiv 16\pi \tau^{\alpha\beta} \end{cases}$$

### Weak-field approximation

 $|h^{lphaeta}| \ll 1 \implies$  perturbative nonlinear treatment

### Flat space retarded propagator



# Post-Newtonian expansion

• For a post-Newtonian source of typical size *d* that evolves over a typical timescale *T*,

$$rac{d}{\lambda_{
m GW}}\sim rac{vT}{c(T/2)}\sim rac{v}{c}\ll 1$$

# Post-Newtonian expansion

• For a post-Newtonian source of typical size *d* that evolves over a typical timescale *T*,

$$rac{d}{\lambda_{
m GW}}\sim rac{vT}{c(T/2)}\sim rac{v}{c}\ll 1$$

• Post-Newtonian expansion of an outgoing wave:

$$\frac{S(t-r/c)}{r} = \frac{S(t)}{r} - \frac{1}{c}\dot{S}(t) + \frac{r}{2c^2}\ddot{S}(t) - \frac{r^2}{6c^3}\ddot{S}(t) + \cdots$$

## Post-Newtonian expansion

• For a post-Newtonian source of typical size *d* that evolves over a typical timescale *T*,

$$rac{d}{\lambda_{
m GW}}\sim rac{vT}{c(T/2)}\sim rac{v}{c}\ll 1$$

• Post-Newtonian expansion of an outgoing wave:

$$\frac{S(t-r/c)}{r} = \frac{S(t)}{r} - \underbrace{\frac{1}{c}\dot{S}(t)}_{\sim S/\lambda_{\rm GW}} + \underbrace{\frac{r}{2c^2}\ddot{S}(t)}_{\sim Sr/\lambda_{\rm GW}^2} - \underbrace{\frac{r^2}{6c^3}\ddot{S}(t)}_{\sim Sr^2/\lambda_{\rm GW}^3} + \cdots$$
#### Post-Newtonian expansion

• For a post-Newtonian source of typical size *d* that evolves over a typical timescale *T*,

$$rac{d}{\lambda_{
m GW}}\sim rac{vT}{c(T/2)}\sim rac{v}{c}\ll 1$$

• Post-Newtonian expansion of an outgoing wave:

$$\frac{S(t-r/c)}{r} = \frac{S(t)}{r} - \underbrace{\frac{1}{c}\dot{S}(t)}_{\sim S/\lambda_{\rm GW}} + \underbrace{\frac{r}{2c^2}\ddot{S}(t)}_{\sim Sr/\lambda_{\rm GW}^2} - \underbrace{\frac{r^2}{6c^3}\ddot{S}(t)}_{\sim Sr^2/\lambda_{\rm GW}^3} + \cdots$$

Expansion ill-behaved when  $r \gtrsim \lambda_{GW}$ 



(Credit: Buonanno & Sathyaprakash 2015)

 Post-Newtonian expansion in near-zone region r ≪ λ<sub>GW</sub>:

$$h_{\rm PN} \equiv \overline{h} = \sum_{n \ge 0} c^{-n} h_{(n)}^{\rm PN}$$



 Post-Newtonian expansion in near-zone region r ≪ λ<sub>GW</sub>:

$$h_{\rm PN} \equiv \overline{h} = \sum_{n \ge 0} c^{-n} h_{(n)}^{\rm PN}$$

• Post-Minkowskian expansion in *exterior* region r > d:

$$h_{\mathsf{PM}} \equiv \mathcal{M}(h) = \sum_{k \geqslant 1} G^k h_{(k)}^{\mathsf{PM}}$$



 Post-Newtonian expansion in near-zone region r ≪ λ<sub>GW</sub>:

$$h_{\rm PN} \equiv \overline{h} = \sum_{n \ge 0} c^{-n} h_{(n)}^{\rm PN}$$

• Post-Minkowskian expansion in *exterior* region r > d:

$$h_{\mathsf{PM}} \equiv \mathcal{M}(h) = \sum_{k \ge 1} G^k h_{(k)}^{\mathsf{PM}}$$



• Matching of asymptotic expansions in overlap region  $d < r \ll \lambda_{GW}$ :

 $\overline{\mathcal{M}(h)} = \mathcal{M}(\overline{h})$ 

 Post-Newtonian expansion in near-zone region r ≪ λ<sub>GW</sub>:

$$h_{\rm PN} \equiv \overline{h} = \sum_{n \ge 0} c^{-n} h_{(n)}^{\rm PN}$$

 Post-Minkowskian expansion in *exterior* region r > d:

$$h_{\mathsf{PM}} \equiv \mathcal{M}(h) = \sum_{k \ge 1} G^k h_{(k)}^{\mathsf{PM}}$$



• Matching of asymptotic expansions in overlap region  $d < r \ll \lambda_{GW}$ :

 $\overline{\mathcal{M}(h)} = \mathcal{M}(\overline{h})$ 

• Gravitational field not weak in and near compact objects!

- Gravitational field not weak in and near compact objects!
- Strong equivalence principle → PN approximation can be applied to strongly gravitating bodies (checked explicitly up to 2PN order)

- Gravitational field not weak in and near compact objects!
- Strong equivalence principle → PN approximation can be applied to strongly gravitating bodies (checked explicitly up to 2PN order)
- Model such extended compact bodies as massive point particles

- Gravitational field not weak in and near compact objects!
- Strong equivalence principle → PN approximation can be applied to strongly gravitating bodies (checked explicitly up to 2PN order)
- Model such extended compact bodies as massive point particles
- Divergent self-field of a point particle  $\rightarrow$  regularization scheme

- Gravitational field not weak in and near compact objects!
- Strong equivalence principle → PN approximation can be applied to strongly gravitating bodies (checked explicitly up to 2PN order)
- Model such extended compact bodies as massive point particles
- Divergent self-field of a point particle  $\rightarrow$  regularization scheme
- Each point mass moves along a geodesic of a regularized metric

#### Post-Newtonian equations of motion





$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{Gm}{r^2}\,\boldsymbol{n}$$

0PN Newton (1687)

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{Gm}{r^2}\,\boldsymbol{n} + \frac{\boldsymbol{A}_{1\mathsf{PN}}}{c^2}$$

| 0PN | Newton (1687)                                          |
|-----|--------------------------------------------------------|
| 1PN | Lorentz & Droste (1917); Einstein <i>et al.</i> (1938) |

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{Gm}{r^2}\,\boldsymbol{n} + \frac{\boldsymbol{A}_{1\mathrm{PN}}}{c^2} + \frac{\boldsymbol{A}_{2\mathrm{PN}}}{c^4}$$

| 0PN | Newton (1687)                                          |
|-----|--------------------------------------------------------|
| 1PN | Lorentz & Droste (1917); Einstein <i>et al.</i> (1938) |
| 2PN | Damour & Deruelle (1982)                               |

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{Gm}{r^2}\,\boldsymbol{n} + \frac{\boldsymbol{A}_{1\mathrm{PN}}}{c^2} + \frac{\boldsymbol{A}_{2\mathrm{PN}}}{c^4} + \frac{\boldsymbol{A}_{3\mathrm{PN}}}{c^6}$$

| 0PN | Newton (1687)                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------|
| 1PN | Lorentz & Droste (1917); Einstein <i>et al.</i> (1938)                                                |
| 2PN | Damour & Deruelle (1982)                                                                              |
| 3PN | Jaranowski & Schäfer (1999); Blanchet & Faye (2001)<br>Itoh & Futamase (2003); Foffa & Sturani (2011) |

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{Gm}{r^2}\,\boldsymbol{n} + \frac{\boldsymbol{A}_{1\mathrm{PN}}}{c^2} + \frac{\boldsymbol{A}_{2\mathrm{PN}}}{c^4} + \frac{\boldsymbol{A}_{3\mathrm{PN}}}{c^6} + \underbrace{\frac{\boldsymbol{A}_{4\mathrm{PN}}}{c^8}}_{\text{non local}} + \cdots$$

| 0PN | Newton | (1687) |
|-----|--------|--------|
|-----|--------|--------|

- 1PN Lorentz & Droste (1917); Einstein *et al.* (1938)
- 2PN Damour & Deruelle (1982)
- **3PN** Jaranowski & Schäfer (1999); Blanchet & Faye (2001) Itoh & Futamase (2003); Foffa & Sturani (2011)
- 4PN Jaranowski & Schäfer (2013); Damour *et al.* (2014) Bernard, Blanchet *et al.* (2016)

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{Gm}{r^2}\,\boldsymbol{n} + \frac{\boldsymbol{A}_{1\mathrm{PN}}}{c^2} + \frac{\boldsymbol{A}_{2\mathrm{PN}}}{c^4} + \frac{\boldsymbol{A}_{3\mathrm{PN}}}{c^6} + \underbrace{\frac{\boldsymbol{A}_{4\mathrm{PN}}}{c^8}}_{\text{non local}} + \cdots$$

| 0PN | Newton | (1687) |
|-----|--------|--------|
|-----|--------|--------|

- 1PN Lorentz & Droste (1917); Einstein *et al.* (1938)
- 2PN Damour & Deruelle (1982)
- **3PN** Jaranowski & Schäfer (1999); Blanchet & Faye (2001) Itoh & Futamase (2003); Foffa & Sturani (2011)
- 4PN Jaranowski & Schäfer (2013); Damour *et al.* (2014) Bernard, Blanchet *et al.* (2016)

Poincaré group symmetries  $\longrightarrow$  10 conserved quantities

• Conservative orbital dynamics  $\rightarrow$  4PN binding energy

$$E(\omega) = \underbrace{-\frac{\mu}{2} (m\omega)^{2/3}}_{\substack{\text{Newtonian} \\ \text{binding energy}}} \underbrace{(1 + \cdots)}_{\substack{\text{4PN relative} \\ \text{correction}}}$$

• Conservative orbital dynamics  $\rightarrow$  4PN binding energy



• Wave generation formalism  $\rightarrow$  3.5PN GW energy flux



Conservative orbital dynamics → 4PN binding energy



• Wave generation formalism  $\rightarrow$  3.5PN GW energy flux



• Energy balance  $\rightarrow$  3.5PN orbital phase and GW phase

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\mathcal{F}$$

Conservative orbital dynamics → 4PN binding energy



• Wave generation formalism  $\rightarrow$  3.5PN GW energy flux



• Energy balance  $\rightarrow$  3.5PN orbital phase and GW phase

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\mathcal{F} \implies \frac{\mathrm{d}\omega}{\mathrm{d}t} = -\frac{\mathcal{F}(\omega)}{E'(\omega)}$$

Conservative orbital dynamics → 4PN binding energy



• Wave generation formalism  $\rightarrow$  3.5PN GW energy flux



• Energy balance  $\rightarrow$  3.5PN orbital phase and GW phase

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\mathcal{F} \implies \frac{\mathrm{d}\omega}{\mathrm{d}t} = -\frac{\mathcal{F}(\omega)}{E'(\omega)} \implies \phi(t) = \int^t \omega(t') \,\mathrm{d}t'$$

#### Waveform for inspiralling compact binaries Equal masses



#### Waveform for inspiralling compact binaries Unequal masses



# Binary systems of spinning compact bodies



#### Spin effects on the waveform

Equal masses and aligned spins



#### Spin effects on the waveform

Unequal masses and misaligned spins



# State of the art

|                    | Spinless | Spin-Orbit | Spin-Squared | Tidal |
|--------------------|----------|------------|--------------|-------|
| Conserv. dynamics  | 4PN      | 3.5PN      | 3PN          | 7PN   |
| Energy flux        | 3.5PN    | 4PN        | 2PN          | 6PN   |
| Radiation reaction | 4.5PN    | 4PN        | 4.5PN        | 6PN   |
| Waveform phase     | 3.5PN    | 4PN        | 2PN          | 6PN   |
| Waveform amplitude | 3PN      | 2PN        | 2PN          | 6PN   |

## PN vs NR waveforms

Equal masses and no spins



[PRD 76 (2007) 124038]

## PN vs NR waveforms

Unequal masses and no spins



[CQG 28 (2011) 134004]

350 GW cycles!

#### PN vs NR waveforms



[PRL 115 (2015) 031102]

### Hybrid PN/NR waveforms



[PRD 77 (2008) 104017]

### Hybrid PN/NR waveforms



[PRD 77 (2008) 104017]

## Further reading

#### **Review articles**

- Gravitational radiation from post-Newtonian sources...
   L. Blanchet, Living Rev. Rel. 17, 2 (2014)
- Post-Newtonian methods: Analytic results on the binary problem G. Schäfer, in Mass and motion in general relativity Edited by L. Blanchet et al., Springer (2011)
- The post-Newtonian approximation for relativistic compact binaries T. Futamase and Y. Itoh, Living Rev. Rel. **10**, 2 (2007)

#### **Topical books**

- Gravity: Newtonian, post-Newtonian, relativistic
   E. Poisson and C. M. Will, Cambridge University Press (2015)
- Gravitational waves: Theory and experiments M. Maggiore, Oxford University Press (2007)

## Outline

1 Gravitational wave source modelling

- **2** Post-Newtonian approximation
- **3** Black hole perturbation theory
- 4 Effective one-body model
- **5** Comparisons
# Extreme mass ratio inspirals (EMRIs)



- eLISA sensitive to  $M_{
  m BH}\sim 10^5-10^7 M_\odot 
  ightarrow q\sim 10^{-7}-10^{-4}$
- $T_{
  m orb} \propto M_{
  m BH} \sim$  hr and  $T_{
  m insp} \propto M_{
  m BH}/q \sim$  yrs







(Credit: S. Drasco)

### Botriomeladesy





(Credit: S. Drasco)

### Botriomeladesy





(Credit: S. Drasco)

#### Test of the black hole no hair theorem

### Large to extreme mass ratios



Metric perturbation



Metric perturbation

$$h_{lphaeta}\equiv \underbrace{\mathfrak{g}_{lphaeta}}_{ ext{exact}}-\underbrace{\mathfrak{g}_{lphaeta}}_{ ext{bkgd}}=\mathcal{O}(q)$$

Lorenz gauge condition

$$abla^{lpha}ar{h}_{lphaeta}=0$$

Metric perturbation

$$h_{lphaeta}\equiv \underbrace{\mathfrak{g}_{lphaeta}}_{ ext{exact}}-\underbrace{\mathfrak{g}_{lphaeta}}_{ ext{bkgd}}=\mathcal{O}(q)$$

Lorenz gauge condition

$$abla^{lpha}ar{h}_{lphaeta}=0$$

Einstein field equations

$$\Box_{g}ar{h}_{lphaeta}+2R^{\mu \ 
u }_{\ lpha \ eta}ar{h}_{\mu
u}=-16\pi\,T_{lphaeta}$$

Metric perturbation

$$h_{lphaeta}\equiv \underbrace{\mathfrak{g}_{lphaeta}}_{ ext{exact}}-\underbrace{\mathfrak{g}_{lphaeta}}_{ ext{bkgd}}=\mathcal{O}(q)$$

Lorenz gauge condition

$$abla^{lpha}ar{h}_{lphaeta}=0$$

Einstein field equations

$$\Box_{g}\bar{h}_{\alpha\beta}+2R^{\mu\nu}_{\alpha\beta}\bar{h}_{\mu\nu}=-16\pi T_{\alpha\beta}$$

#### Linear equation but involved Green's function

### Schwarzschild

- Spherical symmetry  $\rightarrow$  spherical harmonics  $Y_{\ell m}( heta,\phi)$
- Staticity ightarrow Fourier mode decomposition  $e^{-\mathrm{i}\omega t}$
- Regge-Wheeler-Zerilli-Moncrief formalism

### Schwarzschild

- Spherical symmetry ightarrow spherical harmonics  $Y_{\ell m}( heta,\phi)$
- Staticity ightarrow Fourier mode decomposition  $e^{-\mathrm{i}\omega t}$
- Regge-Wheeler-Zerilli-Moncrief formalism

### Kerr

- Stationarity ightarrow Fourier mode decomposition  $e^{-\mathrm{i}\omega t}$
- Axial symmetry ightarrow spin-weighted spheroidal harm.  $_{-2}S^{a\omega}_{\ell m}( heta)e^{{
  m i}m\phi}$
- Teukolsky equation for  $\psi_0/\psi_4$  is **separable**

### Schwarzschild

- Spherical symmetry  $\rightarrow$  spherical harmonics  $Y_{\ell m}( heta,\phi)$
- Staticity ightarrow Fourier mode decomposition  $e^{-\mathrm{i}\omega t}$
- Regge-Wheeler-Zerilli-Moncrief formalism

### Kerr

- Stationarity ightarrow Fourier mode decomposition  $e^{-\mathrm{i}\omega t}$
- Axial symmetry ightarrow spin-weighted spheroidal harm.  $_{-2}S^{a\omega}_{\ell m}( heta)e^{{
  m i}m\phi}$
- Teukolsky equation for  $\psi_0/\psi_4$  is **separable**

#### **Gravitational waveform + Fluxes**

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Canonical Hamiltonian

Constants of the motion

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Constants of the motion

• Energy 
$$E = -t^{lpha}u_{lpha}$$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

Constants of the motion

• Energy 
$$E = -t^{lpha}u_{lpha}$$

• Ang. momentum  $L_z = \phi^{\alpha} u_{\alpha}$ 

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

#### Constants of the motion

- Energy  $E = -t^{\alpha}u_{\alpha}$
- Ang. momentum  $L_z = \phi^{lpha} u_{lpha}$
- Carter constant  $Q = K^{\alpha\beta} u_{\alpha} u_{\beta}$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

**Completely integrable** 

Constants of the motion

- Energy  $E = -t^{\alpha}u_{\alpha}$
- Ang. momentum  $L_z = \phi^{lpha} u_{lpha}$
- Carter constant  $Q = K^{\alpha\beta} u_{\alpha} u_{\beta}$

Canonical Hamiltonian

$$H(x,u)=\frac{1}{2}g^{\alpha\beta}(x)\,u_{\alpha}u_{\beta}$$

#### **Completely integrable**

#### Constants of the motion

- Energy  $E = -t^{\alpha}u_{\alpha}$
- Ang. momentum  $L_z = \phi^{lpha} u_{lpha}$
- Carter constant  $Q = K^{\alpha\beta} u_{\alpha} u_{\beta}$



(Credit: Drasco & Hughes 2006)





• Choose a geodesic orbit  $(E, L_z, Q)$  for the point-mass source



- Choose a geodesic orbit  $(E, L_z, Q)$  for the point-mass source
- Compute the resulting gravitational waves  $h_{+, imes}$  and fluxes  ${\cal F}$



- Choose a geodesic orbit  $(E, L_z, Q)$  for the point-mass source
- Compute the resulting gravitational waves  $h_{+, imes}$  and fluxes  ${\cal F}$
- Impose balance of energy and angular momentum:

$$\langle \dot{E} 
angle = - \mathcal{F}_E \,, \quad \langle \dot{L}_z 
angle = - \mathcal{F}_{L_z} \,, \quad \langle \dot{Q} 
angle = ?$$



- Choose a geodesic orbit  $(E, L_z, Q)$  for the point-mass source
- Compute the resulting gravitational waves  $h_{+, imes}$  and fluxes  ${\cal F}$
- Impose **balance** of energy and angular momentum:

$$\langle \dot{E} 
angle = -\mathcal{F}_E, \quad \langle \dot{L}_z 
angle = -\mathcal{F}_{L_z}, \quad \langle \dot{Q} 
angle = ?$$

• Update the orbit and play again!

### Waveform in the adiabatic approximation



[eLISA whitepaper]

### Waveform in the adiabatic approximation



[PRD 78 (2008) 024022]

- Over an inspiral timescale  $T_{\rm insp} \sim M_{\rm BH}/q$ , the GW phase is given by the expansion

$$\phi = rac{1}{q} \left[ \phi_0 + q \, \phi_1 + \mathcal{O}(q^2) 
ight]$$

• Over an inspiral timescale  $T_{\rm insp} \sim M_{\rm BH}/q$ , the GW phase is given by the expansion

$$\phi = \frac{1}{q} \left[ \phi_0 + q \phi_1 + \mathcal{O}(q^2) \right]$$

• Using  $\phi_0$  is likely good enough for signal detection

- Over an inspiral timescale  $T_{\rm insp} \sim M_{\rm BH}/q$ , the GW phase is given by the expansion

$$\phi = rac{1}{q} \left[ \phi_0 + q \, \phi_1 + \mathcal{O}(q^2) 
ight]$$

- Using  $\phi_0$  is likely good enough for signal detection
- Including  $\phi_1$  will be enough for parameter estimation

- Over an inspiral timescale  $T_{\rm insp} \sim M_{\rm BH}/q$ , the GW phase is given by the expansion

$$\phi = rac{1}{q} \left[ \phi_0 + q \, \phi_1 + \mathcal{O}(q^2) 
ight]$$

- Using  $\phi_0$  is likely good enough for signal detection
- Including  $\phi_1$  will be enough for parameter estimation
- But the adiabatic approximation only gives access to  $\phi_0$

- Over an inspiral timescale  $T_{\rm insp} \sim M_{\rm BH}/q$ , the GW phase is given by the expansion

$$\phi = rac{1}{q} \left[ \phi_0 + q \, \phi_1 + \mathcal{O}(q^2) 
ight]$$

- Using  $\phi_0$  is likely good enough for signal detection
- Including  $\phi_1$  will be enough for parameter estimation
- But the adiabatic approximation only gives access to  $\phi_0$

We need to account for the local effects of the metric perturbation on the body's orbital motion



- Dissipative component ↔ gravitational waves
- Conservative component  $\longleftrightarrow$  secular effects

### Spacetime metric



### Spacetime metric

$$\mathfrak{g}_{\alpha\beta} = \mathfrak{g}_{\alpha\beta}$$

Small parameter

$$q\equiv \frac{m_1}{m_2}\ll 1$$



### Spacetime metric

$$\mathfrak{g}_{\alpha\beta} = \mathfrak{g}_{\alpha\beta} + \mathfrak{h}_{\alpha\beta}$$

Small parameter

$$q\equiv rac{m_1}{m_2}\ll 1$$


# Gravitational self-force

### Spacetime metric

$$\mathfrak{g}_{\alpha\beta} = \mathfrak{g}_{\alpha\beta} + \mathfrak{h}_{\alpha\beta}$$

Small parameter

$$q\equiv rac{m_1}{m_2}\ll 1$$



## Gravitational self-force

### Spacetime metric

$$\mathfrak{g}_{\alpha\beta} = \mathfrak{g}_{\alpha\beta} + h_{\alpha\beta}$$

Small parameter

$$q\equiv \frac{m_1}{m_2}\ll 1$$

Gravitational self-force

$$\dot{u}^{\alpha} \equiv u^{\beta} \nabla_{\beta} u^{\alpha} = f^{\alpha}$$



### Metric perturbation

$$h_{\alpha\beta} = h_{\alpha\beta}^{\text{direct}} + h_{\alpha\beta}^{\text{tail}}$$



### Metric perturbation

$$h_{lphaeta} = h_{lphaeta}^{\mathsf{direct}} + h_{lphaeta}^{\mathsf{tail}}$$



(Credit: A. Pound)

MiSaTaQuWa equation

$$\dot{u}^{\alpha} = -\underbrace{\left(g^{\alpha\beta} + u^{\alpha}u^{\beta}\right)}_{\text{projector }\perp \ u^{\alpha}}\underbrace{\left(\nabla_{\lambda}h^{\text{tail}}_{\beta\sigma} - \frac{1}{2}\nabla_{\beta}h^{\text{tail}}_{\lambda\sigma}\right)}_{\text{"force"}}u^{\lambda}u^{\sigma}$$

### Metric perturbation

$$h_{lphaeta} = h_{lphaeta}^{\mathsf{direct}} + h_{lphaeta}^{\mathsf{tail}}$$



MiSaTaQuWa equation

$$\dot{u}^{\alpha} = -\underbrace{\left(g^{\alpha\beta} + u^{\alpha}u^{\beta}\right)}_{\text{projector} \perp u^{\alpha}}\underbrace{\left(\nabla_{\lambda}h^{\text{tail}}_{\beta\sigma} - \frac{1}{2}\nabla_{\beta}h^{\text{tail}}_{\lambda\sigma}\right)}_{\text{"force"}} u^{\lambda}u^{\sigma} \equiv f^{\alpha}[h^{\text{tail}}]$$

 $x^{\mu}$ 

CURVAN

#### Metric perturbation

$$h_{lphaeta} = h_{lphaeta}^{\mathsf{direct}} + h_{lphaeta}^{\mathsf{tail}}$$

(Credit: A. Pound)

 $z^{\mu}(\tau)$ 

MiSaTaQuWa equation

$$\dot{u}^{\alpha} = -\underbrace{\left(g^{\alpha\beta} + u^{\alpha}u^{\beta}\right)}_{\text{projector }\perp u^{\alpha}}\underbrace{\left(\nabla_{\lambda}h^{\text{tail}}_{\beta\sigma} - \frac{1}{2}\nabla_{\beta}h^{\text{tail}}_{\lambda\sigma}\right)}_{\text{"force"}}u^{\lambda}u^{\sigma} \equiv f^{\alpha}[h^{\text{tail}}]$$

Beware: the self-force is gauge-dependant





(Credit: A. Pound)

body's field  $h_{\alpha\beta}$ 

singular field  $h_{\alpha\beta}^S$ 

regular field  $h^R_{lphaeta}$ 







(Credit: A. Pound)

body's field  $h_{\alpha\beta}$ 

singular field  $h_{\alpha\beta}^S$ 

regular field  $h^R_{\alpha\beta}$ 

singular/self field

$$h^{S} \sim m/r$$
  
 $\Box h^{S} \sim -16\pi T$   
 $f^{\alpha}[h^{S}] = 0$ 





(Credit: A. Pound)

body's field  $h_{\alpha\beta}$ 

singular field  $h^S_{lphaeta}$  r

regular field  $h^R_{\alpha\beta}$ 

singular/self field

regular/residual field

$$\begin{aligned} h^{S} &\sim m/r & h^{R} &\sim \\ \Box h^{S} &\sim -16\pi T & \Box h^{R} &\sim \\ f^{\alpha}[h^{S}] &= 0 & \dot{u}^{\alpha} = \end{aligned}$$

$$h^R \sim h^{ ext{tail}} + ext{local terms}$$
  
 $\Box h^R \sim 0$   
 $\dot{\mu}^lpha = f^lpha [h^R]$ 





(Credit: A. Pound)

body's field  $h_{\alpha\beta}$ 

singular field  $h_{\alpha\beta}^S$  regular field  $h_{\alpha\beta}^R$ 

singular/self field

regular/residual field

$$\begin{aligned} h^{S} &\sim m/r & h^{R} &\sim h^{\text{tail}} + \text{local terms} \\ \Box h^{S} &\sim -16\pi T & \Box h^{R} &\sim 0 \\ f^{\alpha}[h^{S}] &= 0 & \dot{u}^{\alpha} &= f^{\alpha}[h^{R}] \end{aligned}$$

Self-acc. motion in  $g_{\alpha\beta} \iff$  **Geodesic motion** in  $g_{\alpha\beta} + h_{\alpha\beta}^R$ 

#### • Rigorous formulation of gravitational self-force

[Gralla & Wald (2008); Pound (2010); Harte (2012)]

- **Rigorous** formulation of gravitational self-force [Gralla & Wald (2008); Pound (2010); Harte (2012)]
- Practical calculations for generic orbits in Schwarzschild [Barack & Sago (2010); Warburton et al. (2012); Osburn et al. (2016)]

- **Rigorous** formulation of gravitational self-force [Gralla & Wald (2008); Pound (2010); Harte (2012)]
- Practical calculations for generic orbits in Schwarzschild [Barack & Sago (2010); Warburton et al. (2012); Osburn et al. (2016)]
- Gauge-invariant effects of the conservative self-force [Barack & Sago (2009); Shah et al. (2012); Isoyama et al. (2014); ...]

- **Rigorous** formulation of gravitational self-force [Gralla & Wald (2008); Pound (2010); Harte (2012)]
- Practical calculations for generic orbits in Schwarzschild [Barack & Sago (2010); Warburton et al. (2012); Osburn et al. (2016)]
- Gauge-invariant effects of the conservative self-force [Barack & Sago (2009); Shah et al. (2012); Isoyama et al. (2014); ...]
- Practical calculations for equatorial orbits in Kerr [van de Meent & Shah (2015); van de Meent (2016)]

- **Rigorous** formulation of gravitational self-force [Gralla & Wald (2008); Pound (2010); Harte (2012)]
- Practical calculations for generic orbits in Schwarzschild [Barack & Sago (2010); Warburton et al. (2012); Osburn et al. (2016)]
- Gauge-invariant effects of the conservative self-force [Barack & Sago (2009); Shah et al. (2012); Isoyama et al. (2014); ...]
- Practical calculations for equatorial orbits in Kerr [van de Meent & Shah (2015); van de Meent (2016)]
- Formulation of second-order gravitational self-force [Detweiler (2012); Gralla (2012); Pound (2012-2015)]

- **Rigorous** formulation of gravitational self-force [Gralla & Wald (2008); Pound (2010); Harte (2012)]
- Practical calculations for generic orbits in Schwarzschild [Barack & Sago (2010); Warburton et al. (2012); Osburn et al. (2016)]
- Gauge-invariant effects of the conservative self-force [Barack & Sago (2009); Shah et al. (2012); Isoyama et al. (2014); ...]
- Practical calculations for equatorial orbits in Kerr [van de Meent & Shah (2015); van de Meent (2016)]
- Formulation of second-order gravitational self-force [Detweiler (2012); Gralla (2012); Pound (2012-2015)]
- Practical calculations at second order [Pound (2014); Pound et al. (2016+)]

# State of the art

|       |            | Adiabatic | 1st order            | 2nd order |
|-------|------------|-----------|----------------------|-----------|
| Schw. | circular   | ~         | <b>v</b><br><b>v</b> | ongoing   |
|       | generic    | •         | •                    |           |
|       | circular   | ✓         | ~                    |           |
| Kerr  | equatorial | ✓         | ~                    |           |
|       | generic    | ~         | ongoing              | goal      |

# Capra Meetings



19th Capra Meeting on Radiation Reaction (July 2016, Meudon, France)

# Further reading

#### **Review articles**

- Motion of small objects in curved spacetimes
   A. Pound, in Equations of Motion in Relativistic Gravity
   Edited by D. Puetzfeld et al., Springer (2015)
- The motion of point particles in curved spacetime
   E. Poisson, A. Pound and I. Vega, Living Rev. Rel. 14, 7 (2011)
- Gravitational self force in extreme mass-ratio inspirals L. Barack , Class. Quant. Grav. **26**, 213001 (2009)
- Analytic black hole perturbation approach to gravitational radiation
   M. Sasaki and H. Tagoshi, Living Rev. Rel. 6, 5 (2003)

# Outline

1 Gravitational wave source modelling

- 2 Post-Newtonian approximation
- **3** Black hole perturbation theory
- 4 Effective one-body model
- **6** Comparisons



(Credit: Buonanno & Sathyaprakash 2015)

 $E_{\rm eff}(J,N) = f(E_{\rm real}(J,N))$ 



• Motivated by the exact solution in the Newtonian limit



- Motivated by the exact solution in the Newtonian limit
- By construction, the EOB model:



- Motivated by the exact solution in the Newtonian limit
- By construction, the EOB model:
  - $\circ~$  Recovers the known PN dynamics as  $c^{-1} \rightarrow 0$



- Motivated by the exact solution in the Newtonian limit
- By construction, the EOB model:
  - $\circ$  Recovers the known PN dynamics as  $c^{-1} 
    ightarrow 0$
  - $\circ~$  Recovers the geodesic dynamics when  $q \rightarrow 0$



- Motivated by the exact solution in the Newtonian limit
- By *construction*, the EOB model:
  - $\circ$  Recovers the known PN dynamics as  $c^{-1} 
    ightarrow 0$
  - $\circ~$  Recovers the geodesic dynamics when  $q \rightarrow 0$
- Idea extended to spinning binaries and to tidal effects

# EOB Hamiltonian dynamics

#### EOB Hamiltonian

$$H_{\text{real}}^{\text{EOB}} = M \sqrt{1 + 2\nu \left(\frac{H_{\text{eff}}}{\mu} - 1\right)}, \quad \nu \equiv \frac{\mu}{M} \in [0, 1/4]$$

## EOB Hamiltonian dynamics

### EOB Hamiltonian

$$H_{\text{real}}^{\text{EOB}} = M \sqrt{1 + 2\nu \left(\frac{H_{\text{eff}}}{\mu} - 1\right)}, \quad \nu \equiv \frac{\mu}{M} \in [0, 1/4]$$

### Effective Hamiltonian

$$H_{\rm eff} = \mu \sqrt{g_{tt}^{\rm eff}(r) \left(1 + \frac{p_{\phi}^2}{r^2} + \frac{p_r^2}{g_{rr}^{\rm eff}(r)} + \cdots\right)}$$

## EOB Hamiltonian dynamics

#### EOB Hamiltonian

$$H_{\text{real}}^{\text{EOB}} = M \sqrt{1 + 2\nu \left(\frac{H_{\text{eff}}}{\mu} - 1\right)}, \quad \nu \equiv \frac{\mu}{M} \in [0, 1/4]$$

#### Effective Hamiltonian

$$H_{\rm eff} = \mu \sqrt{g_{tt}^{\rm eff}(r) \left(1 + \frac{p_{\phi}^2}{r^2} + \frac{p_r^2}{g_{rr}^{\rm eff}(r)} + \cdots\right)}$$

#### Hamilton's equations

$$\dot{r} = \frac{\partial H_{\text{real}}^{\text{EOB}}}{\partial p_r}, \quad \dot{p}_r = -\frac{\partial H_{\text{real}}^{\text{EOB}}}{\partial r} + F_r, \quad \cdots$$

# EOB effective metric

Effective metric

$$\mathrm{d}s_{\mathrm{eff}}^2 = -g_{tt}^{\mathrm{eff}}(r;\nu)\,\mathrm{d}t^2 + g_{rr}^{\mathrm{eff}}(r;\nu)\,\mathrm{d}r^2 + r^2\,\mathrm{d}\Omega^2$$

# EOB effective metric

Effective metric

$$\mathrm{d}s_{\mathrm{eff}}^2 = -g_{tt}^{\mathrm{eff}}(r;\nu)\,\mathrm{d}t^2 + g_{rr}^{\mathrm{eff}}(r;\nu)\,\mathrm{d}r^2 + r^2\,\mathrm{d}\Omega^2$$

#### Effective potentials

$$g_{tt}^{eff} = \underbrace{1 - \frac{2M}{r}}_{Schwarzschild} + \underbrace{\nu \left[ 2\left(\frac{M}{r}\right)^3 + \left(\frac{94}{3} - \frac{41}{32}\pi^2\right) \left(\frac{M}{r}\right)^4 + \cdots \right]}_{finite mass-ratio "deformation"}$$

## EOB effective metric

Effective metric

$$\mathrm{d}s_{\mathrm{eff}}^{2} = -g_{tt}^{\mathrm{eff}}(r;\nu)\,\mathrm{d}t^{2} + g_{rr}^{\mathrm{eff}}(r;\nu)\,\mathrm{d}r^{2} + r^{2}\,\mathrm{d}\Omega^{2}$$

#### Effective potentials

$$g_{tt}^{eff} = \underbrace{1 - \frac{2M}{r}}_{\text{Schwarzschild}} + \underbrace{\nu \left[ 2\left(\frac{M}{r}\right)^3 + \left(\frac{94}{3} - \frac{41}{32}\pi^2\right) \left(\frac{M}{r}\right)^4 + \cdots \right]}_{\text{finite mass-ratio "deformation"}}$$

#### Padé resummation

Motivation: improve convergence of PN series in strong-field regime

# EOB waveform generation

#### Inspiral/plunge

Evolution of Hamiltonian dynamics up to EOB light-ring Resummations of PN waveform modes and fluxes

 $h^{\text{inspiral}}(t) =$  "big mess"

# EOB waveform generation

#### Inspiral/plunge

Evolution of Hamiltonian dynamics up to EOB light-ring Resummations of PN waveform modes and fluxes

 $h^{\text{inspiral}}(t) =$  "big mess"

### Merger/ringdown

Impose continuity with black hole quasinormal modes ringing

$$h^{\mathrm{ringdown}}(t) = \sum_{n\ell m} C_{n\ell m} e^{-t/\tau_{n\ell m}} \cos\left(\omega_{n\ell m}(t-t_{\mathrm{m}})\right)$$

# EOB waveform generation

#### Inspiral/plunge

Evolution of Hamiltonian dynamics up to EOB light-ring Resummations of PN waveform modes and fluxes

 $h^{\text{inspiral}}(t) =$  "big mess"

### Merger/ringdown

Impose continuity with black hole quasinormal modes ringing

$$h^{\mathrm{ringdown}}(t) = \sum_{n\ell m} C_{n\ell m} e^{-t/\tau_{n\ell m}} \cos\left(\omega_{n\ell m}(t-t_{\mathrm{m}})\right)$$

Final EOB waveform

$$h^{\text{EOB}}(t) = \Theta(t_{\text{m}} - t) \, h^{\text{inspiral}}(t) + \Theta(t - t_{\text{m}}) \, h^{\text{ringdown}}(t)$$

## EOB waveform prediction



(Credit: Buonanno & Sathyaprakash 2015)
Equal masses and no spins



[PRD 79 (2009) 081503]

Equal masses and no spins



[PRD 79 (2009) 081503]

Unequal masses and no spins



[PRD 79 (2009) 081503]

Equal masses and aligned spins



[PRD 89 (2014) 061502]

Unequal masses and a precessing spin

$$(q, \chi_1, \chi_2) = (5, +0.5, 0), \ \iota = \pi/3$$



[gr-qc/1607.05661]

#### • Extension of EOB model to spinning binaries

[Barausse & Buonanno (2011), Nagar (2011), Damour & Nagar (2014)]

#### • Extension of EOB model to spinning binaries

[Barausse & Buonanno (2011), Nagar (2011), Damour & Nagar (2014)]

#### • Addition of tidal interactions for neutrons stars

[Damour & Nagar (2010), Bini et al. (2012), Hinderer et al. (2016)]

- Extension of EOB model to spinning binaries [Barausse & Buonanno (2011), Nagar (2011), Damour & Nagar (2014)]
- Addition of tidal interactions for neutrons stars [Damour & Nagar (2010), Bini et al. (2012), Hinderer et al. (2016)]
- Various calibrations to numerical relativity simulations [Damour & Nagar (2014), Pan et al. (2014), Taracchini et al. (2014)]

- Extension of EOB model to spinning binaries [Barausse & Buonanno (2011), Nagar (2011), Damour & Nagar (2014)]
- Addition of tidal interactions for neutrons stars
  [Damour & Nagar (2010), Bini et al. (2012), Hinderer et al. (2016)]
- Various calibrations to numerical relativity simulations [Damour & Nagar (2014), Pan et al. (2014), Taracchini et al. (2014)]
- Calibration of EOB potentials by comparison to self-force [Barack et al. (2011), Le Tiec (2015), Akcay & van de Meent (2016)]

# Further reading

#### **Review articles**

- Sources of gravitational waves: Theory and observations A. Buonanno and B. S. Sathyaprakash, in *General relativity and* gravitation: A centennial perspective Edited by A. Ashtekar et al., Cambridge University Press (2015)
- The general relativistic two body problem and the EOB formalism T. Damour, in *General relativity, cosmology and astrophysics* Edited by J. Bicák and T. Ledvinka, Springer (2014)
- The effective one-body description of the two-body problem
  T. Damour and A. Nagar, in Mass and motion in general relativity
  Edited by L. Blanchet et al., Springer (2011)

# Outline

1 Gravitational wave source modelling

- 2 Post-Newtonian approximation
- **3** Black hole perturbation theory
- 4 Effective one-body model







#### Why?

- Independent checks of long and complicated calculations
- Identify domains of validity of approximation schemes
- Extract information inaccessible to other methods
- Develop a universal model for compact binaries

#### Why?

- Independent checks of long and complicated calculations
- Identify domains of validity of approximation schemes
- Extract information inaccessible to other methods
- Develop a universal model for compact binaries

#### How?

- $\boldsymbol{x}$  Use the same coordinate system in all calculations
- Using coordinate-invariant relationships

#### Why?

- Independent checks of long and complicated calculations
- Identify domains of validity of approximation schemes
- Extract information inaccessible to other methods
- Develop a universal model for compact binaries

#### How?

- $\mathbf x$  Use the same coordinate system in all calculations
- Using coordinate-invariant relationships

#### What?

- Gravitational waveforms at future null infinity
- Conservative effects on the orbital dynamics

| Paper                    | Year | Methods   | Observable      | Orbit     | Spin |
|--------------------------|------|-----------|-----------------|-----------|------|
| Baker <i>et al.</i>      | 2007 | NR/PN     | waveform        |           |      |
| Boyle <i>et al.</i>      | 2007 | NR/PN     | waveform        |           |      |
| Hannam <i>et al.</i>     | 2007 | NR/PN     | waveform        |           |      |
| Boyle <i>et al.</i>      | 2008 | NR/PN/EOB | energy flux     |           |      |
| Damour & Nagar           | 2008 | NR/EOB    | waveform        |           |      |
| Hannam <i>et al.</i>     | 2008 | NR/PN     | waveform        |           | 1    |
| Pan <i>et al.</i>        | 2008 | NR/PN/EOB | waveform        |           |      |
| Campanelli <i>et al.</i> | 2009 | NR/PN     | waveform        |           | 1    |
| Hannam <i>et al.</i>     | 2010 | NR/PN     | waveform        |           | 1    |
| Hinder <i>et al.</i>     | 2010 | NR/PN     | waveform        | eccentric |      |
| Lousto <i>et al.</i>     | 2010 | NR/BHP    | waveform        |           |      |
| Sperhake <i>et al.</i>   | 2011 | NR/PN     | waveform        |           |      |
| Sperhake et al.          | 2011 | NR/BHP    | waveform        | head-on   |      |
| Lousto & Zlochower       | 2011 | NR/BHP    | waveform        |           |      |
| Nakano <i>et al.</i>     | 2011 | NR/BHP    | waveform        |           |      |
| Lousto & Zlochower       | 2013 | NR/PN     | waveform        |           |      |
| Nagar                    | 2013 | NR/BHP    | recoil velocity |           |      |
| Hinder et al.            | 2014 | NR/PN/EOB | waveform        |           | 1    |
| Szilagyi <i>et al.</i>   | 2015 | NR/PN/EOB | waveform        |           |      |
| Ossokine et al.          | 2015 | NR/PN     | waveform        |           | 1    |

| Paper                                                         | Year | Methods       | Observable          | Orbit     | Spin |
|---------------------------------------------------------------|------|---------------|---------------------|-----------|------|
| Detweiler                                                     | 2008 | BHP/PN        | redshift observable |           |      |
| Blanchet <i>et al.</i>                                        | 2010 | BHP/PN        | redshift observable |           |      |
| Damour                                                        | 2010 | BHP/EOB       | ISCO frequency      |           |      |
| Mroué <i>et al.</i>                                           | 2010 | NR/PN         | periastron advance  |           |      |
| Barack <i>et al.</i>                                          | 2010 | BHP/EOB       | periastron advance  |           |      |
| Favata                                                        | 2011 | BHP/PN/EOB    | ISCO frequency      |           |      |
| Le Tiec <i>et al.</i>                                         | 2011 | NR/BHP/PN/EOB | periastron advance  |           |      |
| Damour et al.                                                 | 2012 | NR/EOB        | binding energy      |           |      |
| Le Tiec <i>et al.</i>                                         | 2012 | NR/BHP/PN/EOB | binding energy      |           |      |
| Akcay <i>et al.</i>                                           | 2012 | BHP/EOB       | redshift observable |           |      |
| Hinderer et al.                                               | 2013 | NR/EOB        | periastron advance  |           | 1    |
| Le Tiec <i>et al.</i>                                         | 2013 | NR/BHP/PN     | periastron advance  |           | 1    |
| Bini & Damour<br>Shah <i>et al.</i><br>Blanchet <i>et al.</i> | 2014 | BHP/PN        | redshift observable |           |      |
| Dolan <i>et al.</i><br>Bini & Damour }                        | 2014 | BHP/PN        | precession angle    |           | 1    |
| lsoyama <i>et al.</i>                                         | 2014 | BHP/PN/EOB    | ISCO frequency      |           | 1    |
| Akcay et al.                                                  | 2015 | BHP/PN        | averaged redshift   | eccentric |      |
| Shah & Pound                                                  | 2015 | BHP/PN        | precession angle    |           | 1    |
| Zimmerman <i>et al.</i>                                       | 2016 | NR/PN         | surface gravity     |           |      |
| Akcay <i>et al.</i>                                           | 2016 | BHP/PN        | precession angle    | eccentric |      |

# Relativistic perihelion advance of Mercury

- Observed anomalous advance of Mercury's perihelion of ~ 43"/cent.
- Accounted for by the leading-order relativistic angular advance per orbit

$$\Delta \Phi = \frac{6\pi G M_{\odot}}{c^2 a \left(1 - e^2\right)}$$

 Periastron advance of ~ 4°/yr now measured in binary pulsars



### Periastron advance in black hole binaries

• Generic eccentric orbit parametrized by the two invariant frequencies

$$\Omega_r = \frac{2\pi}{P}, \quad \Omega_{\varphi} = \frac{1}{P} \int_0^P \dot{\varphi}(t) \, \mathrm{d}t$$

Periastron advance per radial period

$$K \equiv \frac{\Omega_{\varphi}}{\Omega_r} = 1 + \frac{\Delta \Phi}{2\pi}$$

 In the circular orbit limit e → 0, the relation K(Ω<sub>φ</sub>) is coordinate-invariant



#### Periastron advance vs orbital frequency



[PRL 107 (2011) 141101]

#### Periastron advance vs orbital frequency



[PRL 107 (2011) 141101]

#### Periastron advance vs mass ratio



[PRL 107 (2011) 141101]









• The innermost stable circular orbit is identified by a vanishing restoring radial force under small-*e* perturbations:

$$\frac{\partial^2 H}{\partial r^2} = 0 \quad \longrightarrow \quad \Omega_{\rm ISCO}$$

• The minimum energy circular orbit is the most bound orbit along a sequence of circular orbits:

$$\frac{\partial E}{\partial \Omega} = 0 \quad \longrightarrow \quad \Omega_{MECO}$$

• For Hamiltonian systems [Buonanno *et al.* (2003)]

 $\Omega_{\text{ISCO}}=\Omega_{\text{MECO}}$ 



### Kerr ISCO frequency vs black hole spin



## Kerr ISCO frequency vs black hole spin



# Spins of supermassive black holes



[CQG 30 (2013) 244004]

# Frequency shift of the Kerr ISCO

• The orbital frequency of the Kerr ISCO is shifted under the effect of the conservative self-force:

$$(M+m)\Omega_{\rm isco} = \underbrace{M\Omega_{\rm isco}^{\rm kerr}(\chi)}_{\substack{\rm test\ mass\\ \rm result}} \left\{ 1 + \underbrace{q\ C_{\Omega}(\chi)}_{\substack{\rm conservative\\ \rm GSF\ effect}} + \mathcal{O}(q^2) \right\}$$

- The frequency shift can be computed from a stability analysis of slightly eccentric orbits near the Kerr ISCO
- Combining the Hamiltonian first law with the MECO conditio  $\partial E/\partial \Omega = 0$  yields the same result:

$$\mathcal{C}_{\Omega} = rac{1}{2} \, rac{z_{\mathsf{GSF}}'(\Omega_{\mathsf{isco}}^{\mathsf{kerr}})}{E''(\Omega_{\mathsf{isco}}^{\mathsf{kerr}})}$$







