Online Data Compression in the ALICE O2 facility

Matthias Richter
for the ALICE collaboration

Department of Physics, University of Oslo
CERN - European Organization for Nuclear Research

22nd International Conference on Computing in High Energy and Nuclear Physics, Hosted by SLAC and LBNL, Fall 2016
Matthias.Richter@scieq.net (UiO, CERN)

ALICE O2 Online Data Compression

Oct 12 2016

1/15

Outline

(+]

Data Compression in the ALICE Upgrade

©

Prototype of a generic Data Compression Framework

©

Programming techniques for a generic solution.

(]

Prototype in operation

©

Summary

= =) E E E 9ace
Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 2 /15

Data Compression in the ALICE Upgrade
A challanging goal ...

Inspect all Pb-Pb collisions at min bias rate of 50 kHz to provide access to
rare physics probes. Continous processing of data stream of 3.4 TByte/s.

o ALICE run 3 readout-electronics partly based on continuous readout;
e.g the Time Projection Chamber (TPC) is read out continuously.

o TPC readout data rate > 3 TByte/s @ 50 kHz min bias Pb-Pb
required data reduction factor: ~ 40

Assumptions for the Data Compression Framework

o Data are organized in so called Time Frames (TF) of fixed length,
currently set to 10 ms

o TPC clusters (spacepoints) per TF: ~ 250x10°, 7 parameters each;
10 bytes/cluster in optimized bitstream; 24 bytes in linear storage

up to 250 x 10% TPC clusters need to be processed per TF;

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 3/15

Overall Data Reduction Scheme

The overall scheme is based on experience with an implementation of data
reduction for the TPC in the ALICE High Level Trigger in Run 1 and 2.

Standard data compression algorithms applied to raw data can only
provide compression factors up to ~ 2; higher factors can be reached by
using knowledge about the data model.

Steps in the processing flow:
@ Reconstruction of Clusters from raw data
@ Transformation to reduced precision with negligible impact to physics
@ Entropy coding - lossless data compression

Two challenges:

Efficiency Performance
Meet requirements for Processing time has to fit
data reduction factor into available resources

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 4 /15

Prototype of a generic Data Compression Framework

While 1st-level reconstruction of raw data with required precision is

detector dependent, the lossless entropy coding and storage in optimized
format is suited for a generic framework.

Sequence of
runtime objects

-

-~ |

Matthias.Richter@scieq.net (UiO, CERN)

\.

Algorithm Buffer/Memory

Linear storage ‘ - I:- | - ‘
J

Fixed register bit length

—
ey - ‘ Stream deflater ‘-p | |

Fixed member hit length

~

Stream deflater
with Codec

- [

s

Variable bit length

ALICE O2 Online Data Compression Oct 12 2016

5/15

Requirements and Boundary Conditions

o Sequence of runtime objects of identical type needs to be stored in
data stream

o Each object has multiple parameters with individual characteristics
and probability models

o Framework has to support multiple codec types, e.g Huffman and
Arithmetic coding

= need a polymorphic solution in the framework, i.e. decide which
piece of code to execute based on the type of something J

o Innermost functions of the processing loop are called O(10°) per TF

= even a minor performance optimization allows for big effects J

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 6 /15

A Word on Polymorphism

Runtime polymorphism: the actual binding of the type of an object is
deferred until runtime, usually realized using classes with virtual functions.

Static polymorphism: completely resolved at compile time

- type checks at compile time

- select among code branches which would not compile in all cases
- generic algorithms

- generic handling of multiple types

- compiler has a lot more information for code optimization

Tools for implementation of static polymorphism

Template programming and meta programming allow to move a significant
part of computation and code dispatch from runtime to compile time.

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 7/15

Compile time Optimization in the Framework

Policy-based design - Decomposing Processing into small entities

2 rips ety Policies are small functional entities
o Alphabet (classes) which take care of sepa-
o Probability Model rate behavioral or structural aspects.
o Codec Complex entities are assembled from
- @uit palisy several small policies.

Alphabet fixed at compile time

Probability Model | runtime dependent

Codec algorithm fixed at compile time

Challenge: need a runtime object which holds the state

(pure types do not have a state)

Runtime object has to follow the type definition at compile time

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016

8/ 15

Defining Alphabets

Individual Alphabets:
o An alphabet is a set of symbols to be treated by a data compression
algorithm
o The alphabet is fixed at compile time
o A contiguous alphabet of integral numbers of type T between a
minimum and maximum value can be defined like
template<typename T, T _min, T _max, typename NameT> class ContiguousAlphabet {...};
o Specializations for distinct cases: alphabet from 0 to some maximum,
alphabet for an n-bit field examples in the backup slides
Multiple Parameters:
o Runtime objects have multiple parameters with individual probability
models, the parameters need to be stored in a continuous data stream.
o Sets of parameter types defined at compile time, the framework
makes use of the boost Metaprogramming Library. exampie in the backup slides

Note: these are types, not runtime objects; all information is available at compile time)

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 9/15

Probability Model

The probability model describes the statistical occurrence of the symbols
of an alphabet

Usually not fixed at compile time; statistics is gathered from a runtime data sample

A type-safe runtime-container
Need a combination of compile time type definitions and runtime objects,
an interface between compile time and runtime domains

A solution: Mixin-Based Programming technique

Type D

@ A recursive definition of identical templates, each wrapping one

data type from the list

@ The container comprises a recursive definition of types where
each type includes the previous ones

@ The compiler can walk through the container levels by static cast
Base
@ No virtual inheritance

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 10 / 15

Runtime Dispatch to Container Levels
Access to each data type level through static cast at compile time.
static_cast<level&>(containerobject).doSomething() ;

The operation is either implemented as specific method in the runtime
container or passed to the runtime container level through a functor.

Two options: T rooMasa A Iy X Y
@ Dynamic dispatch: compiler creates Lo
. . . . Rl . v v v v
recursive list of compiled functions sofy
. C A recursive -00
from a meta function template - ¥ et 00
. . . . C recursive -O3 (x10)
@ Static dispatch: loop unrolling in a 201 + urcted 080010
ific di her f . e * * ® |
specific dispatcher tunction IR <10

760 800
N operations
What the compiler can do:

@ Without optimization: the explicitly unrolled version is faster than the generic
recursive approach.

@ With optimization: both versions show effectively equal performance, one to two
orders of magnitude faster (note x10 scaling in the figure to make them visible)

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 11 /15

Optimization of Runtime Dispatch

Type D
— O Runtime container wraps objects of
s different data types

= static_cast<TypeA>(object) ..)
e] | O Individual levels of the container can
e be accessed by type casts
[ypec 3)

T O static_cast is evaluated already at

compile time

static_cast<TypeB>(object) .

== = Generic, 100% type-safe access to

multiple data types

Access patterns:

Recursive access Unrolled access Bulk access

Generic method; Generic method; Specific method for the runtime
Recursive loop of Direct cast to required object to be processed; direct cast
meta functions, level in a runtime switch; to individual levels; no additional
level as parameter no recursive function calls runtime switch

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 12 / 15

Data Compression Framework Prototype in Operation

Testing the framework in the three modes recursive, unrolled, and bulk operation
with different compiler optimization levels: -00, -01, , —03.

Testing Huffman coding as example operation

o E 7y E
L o+ Rl + S 4570 4 A A a &
S E 4 RECURSIVE Of S E.
Seoro © P R I . R
2% 4 necunsne.os ¢ S5, A o &
50 0 uwouoo aE
£ & uolLor E
40 oL o2 2.5
E o wwoos E
soE" 4 A& B A sooromones | D 2
E A\ su-opemamon o1 156
20 BuLK opERATION 02 i
£ [\ BULK-OPERATION 08 E
10E¢ EI #| maen # 05E J——
C A A A A A E
G*A B LSt £ L L L2 x10° G: L L L L L L L L L x10°
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000

N operations N operations
Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz

= Compiler optimization leads automatically to unrolled code
= Bulk operation is the most performant option
= Static polymorphism: faster operation than runtime polymorphism

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 13 / 15

Comparison with existing Implementation
Time per operation for compiler optimization level 2

o Current implementation of
Huffman compression in
AliRoot for ALICE Run 1 and 2
uses runtime polymorphism,
base class interfaces and virtual

toporation (18]

NN @

S & 8
TR e e T

o

inheritance. “ e
o ALICE O? framework uses 5 s
static polymorphism for both b ‘ ‘ ‘ T
. . 200 400 600 800 N 100%
generic recursive method and operations
specializations. Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz

A concluding estimation
To cope with the data rate @ O(10°) operations in 10ms timeframes:

o 30s per TF = minimum 3000 cores
o 3.5s per TF = minimum 350 cores

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 14 / 15

Summary

o ALICE O2 data reconstruction and storage will extensively use data
compression

o A generic framework prototype has been developed to facilitate
different applications

o Meta programming allows for flexibility AND compile time
optimization

o A type-safe interface between compile time and runtime domain has
been developed, backbone of polymorphism in the framework

o Encouraging results, method is neither restricted to data compression
framework nor bound to particular detector

o Meta programming has a huge potential for online processing at large
data rates

Thank you!

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 15 / 15

Backup slides

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 15 / 15

Alphabet examples

o Alphabet of contiguous range of symbols between [min, max]

template<typename T, T _min, T _max, typename NameT> class ContiguousAlphabet {...};

o Alphabet of contiguous range of symbols between [0, max]

template<typename T, T _max, typename NameT> class ZeroBoundContiguousAlphabet {...};

o Alphabet for an n-bit field, contiguous range [0, 2"]

template<typename T, std::size_t n, typename NameT> class ZeroBoundContiguousAlphabet {...};

Examples (omitting name template parameter):

typedef ContiguousAlphabet<int, -16384, 16383 > MyContiguousAlphabetType;
typedef ZeroBoundContiguousAlphabet<int16_t, 1000 > MyZeroBoundAlphabetType;

typedef BitRangeContiguousAlphabet<int8_t, 6 > My6BitAlphabetType;

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 16 / 15

Multiple parameters

The runtime objects have multiple parameters with individual probability

models, the parameters need to be stored in a continuous sequence.

To define sets of parameter types at compile time, the framework makes

use of the boost Metaprogramming Library.

typedef boost::mpl::vector<
BitRangeContiguousAlphabet<inti6_t,
ContiguousAlphabet<int16_t, -16384,
ContiguousAlphabet<int16_t, -32768,
BitRangeContiguousAlphabet<int16_t,
BitRangeContiguousAlphabet<int16_t,
BitRangeContiguousAlphabet<int16_t,

ZeroBoundContiguousAlphabet<int16_t, 1000

> tpccluster_parameter;

6 , boost:
16383 , boost:
32767 , boost:

8 , boost:

8 , boost:

16 , boost:
, boost:

@ Can mix different types of alphabets.

cmpl:
cmpl:
cmpl:
cmpl:
cmpl:
cmpl:
cmpl:

@ Again, this is a data type without a state.

Matthias.Richter@scieq.net (UiO, CERN)

ALICE O2 Online Data Compression

:string
:string
:string
:string
:string
:string
:string

>
>

>

’r’,’0’,’w’ >

PP o Dr? o Iil? 061 5 DAL o 94R0 OFD
’t?,’i%,°’m’,%e’,’d’, %1%, £, £0>>,
’s?,’i%,’g’,’m’,’a’, Y7, 027 >
87,010,087 ,°m’, 8,020,027 >
2cr,0h e, 00,0, e >

’q’,’m’,%a’,’x’ >

Oct 12 2016

>
>:
>

17 / 15

	Outline
	Introduction: Data Compression in the Alice Upgrade
	Backup

