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Data Compression in the ALICE Upgrade
A challanging goal ...

Inspect all Pb-Pb collisions at min bias rate of 50 kHz to provide access to
rare physics probes. Continous processing of data stream of 3.4 TByte/s.

o ALICE run 3 readout-electronics partly based on continuous readout;
e.g the Time Projection Chamber (TPC) is read out continuously.

o TPC readout data rate > 3 TByte/s @ 50 kHz min bias Pb-Pb
required data reduction factor: ~ 40

Assumptions for the Data Compression Framework

o Data are organized in so called Time Frames (TF) of fixed length,
currently set to 10 ms

o TPC clusters (spacepoints) per TF: ~ 250x10°, 7 parameters each;
10 bytes/cluster in optimized bitstream; 24 bytes in linear storage

up to 250 x 10% TPC clusters need to be processed per TF;

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 3/15



Overall Data Reduction Scheme

The overall scheme is based on experience with an implementation of data
reduction for the TPC in the ALICE High Level Trigger in Run 1 and 2.

Standard data compression algorithms applied to raw data can only
provide compression factors up to ~ 2; higher factors can be reached by
using knowledge about the data model.

Steps in the processing flow:
@ Reconstruction of Clusters from raw data
@ Transformation to reduced precision with negligible impact to physics
@ Entropy coding - lossless data compression

Two challenges:

Efficiency Performance
Meet requirements for Processing time has to fit
data reduction factor into available resources
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Prototype of a generic Data Compression Framework

While 1st-level reconstruction of raw data with required precision is

detector dependent, the lossless entropy coding and storage in optimized
format is suited for a generic framework.
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Requirements and Boundary Conditions

o Sequence of runtime objects of identical type needs to be stored in
data stream

o Each object has multiple parameters with individual characteristics
and probability models

o Framework has to support multiple codec types, e.g Huffman and
Arithmetic coding

= need a polymorphic solution in the framework, i.e. decide which
piece of code to execute based on the type of something J

o Innermost functions of the processing loop are called O(10°) per TF

= even a minor performance optimization allows for big effects J

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 6 /15



A Word on Polymorphism

Runtime polymorphism: the actual binding of the type of an object is
deferred until runtime, usually realized using classes with virtual functions.

Static polymorphism: completely resolved at compile time

- type checks at compile time

- select among code branches which would not compile in all cases
- generic algorithms

- generic handling of multiple types

- compiler has a lot more information for code optimization

Tools for implementation of static polymorphism

Template programming and meta programming allow to move a significant
part of computation and code dispatch from runtime to compile time.
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Compile time Optimization in the Framework

Policy-based design - Decomposing Processing into small entities

2 rips ety Policies are small functional entities
o Alphabet (classes) which take care of sepa-
o Probability Model rate behavioral or structural aspects.
o Codec Complex entities are assembled from
- @uit palisy several small policies.

Alphabet fixed at compile time

Probability Model | runtime dependent

Codec algorithm fixed at compile time

Challenge: need a runtime object which holds the state

(pure types do not have a state)

Runtime object has to follow the type definition at compile time
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Defining Alphabets

Individual Alphabets:
o An alphabet is a set of symbols to be treated by a data compression
algorithm
o The alphabet is fixed at compile time
o A contiguous alphabet of integral numbers of type T between a
minimum and maximum value can be defined like
template<typename T, T _min, T _max, typename NameT> class ContiguousAlphabet {...};
o Specializations for distinct cases: alphabet from 0 to some maximum,
alphabet for an n-bit field examples in the backup slides
Multiple Parameters:
o Runtime objects have multiple parameters with individual probability
models, the parameters need to be stored in a continuous data stream.
o Sets of parameter types defined at compile time, the framework
makes use of the boost Metaprogramming Library.  exampie in the backup slides

Note: these are types, not runtime objects; all information is available at compile time )
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Probability Model

The probability model describes the statistical occurrence of the symbols
of an alphabet

Usually not fixed at compile time; statistics is gathered from a runtime data sample

A type-safe runtime-container
Need a combination of compile time type definitions and runtime objects,
an interface between compile time and runtime domains

A solution: Mixin-Based Programming technique

Type D

@ A recursive definition of identical templates, each wrapping one

data type from the list

@ The container comprises a recursive definition of types where
each type includes the previous ones

@ The compiler can walk through the container levels by static cast
Base
@ No virtual inheritance
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Runtime Dispatch to Container Levels
Access to each data type level through static cast at compile time.
static_cast<level&>(containerobject).doSomething() ;

The operation is either implemented as specific method in the runtime
container or passed to the runtime container level through a functor.

Two options: T rooMasa A Iy X Y
@ Dynamic dispatch: compiler creates Lo
. . . . Rl . v v v v
recursive list of compiled functions sofy
. C A recursive -00
from a meta function template - ¥ et 00
. . . . C recursive -O3 (x10)
@ Static dispatch: loop unrolling in a 201 + urcted 080010
ific di her f . e * * ® |
specific dispatcher tunction IR <10

760 800
N operations
What the compiler can do:

@ Without optimization: the explicitly unrolled version is faster than the generic
recursive approach.

@ With optimization: both versions show effectively equal performance, one to two
orders of magnitude faster (note x10 scaling in the figure to make them visible)
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Optimization of Runtime Dispatch

Type D
— O Runtime container wraps objects of
s different data types

= static_cast<TypeA>(object) .. )
e ] | O Individual levels of the container can
e be accessed by type casts
[ ypec 3 )

T O static_cast is evaluated already at

compile time

static_cast<TypeB>(object) .

== = Generic, 100% type-safe access to

multiple data types

Access patterns:

Recursive access Unrolled access Bulk access

Generic method; Generic method; Specific method for the runtime
Recursive loop of Direct cast to required object to be processed; direct cast
meta functions, level in a runtime switch; to individual levels; no additional
level as parameter no recursive function calls runtime switch
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Data Compression Framework Prototype in Operation

Testing the framework in the three modes recursive, unrolled, and bulk operation
with different compiler optimization levels: -00, -01, , —03.

Testing Huffman coding as example operation
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= Compiler optimization leads automatically to unrolled code
= Bulk operation is the most performant option
= Static polymorphism: faster operation than runtime polymorphism

Matthias.Richter@scieq.net (UiO, CERN) ALICE O2 Online Data Compression Oct 12 2016 13 / 15



Comparison with existing Implementation
Time per operation for compiler optimization level 2

o Current implementation of
Huffman compression in
AliRoot for ALICE Run 1 and 2
uses runtime polymorphism,
base class interfaces and virtual

toporation (18]
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generic recursive method and operations
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A concluding estimation
To cope with the data rate @ O(10°) operations in 10ms timeframes:

o 30s per TF = minimum 3000 cores
o 3.5s per TF = minimum 350 cores
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Summary

o ALICE O2 data reconstruction and storage will extensively use data
compression

o A generic framework prototype has been developed to facilitate
different applications

o Meta programming allows for flexibility AND compile time
optimization

o A type-safe interface between compile time and runtime domain has
been developed, backbone of polymorphism in the framework

o Encouraging results, method is neither restricted to data compression
framework nor bound to particular detector

o Meta programming has a huge potential for online processing at large
data rates

Thank you!
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Backup slides
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Alphabet examples

o Alphabet of contiguous range of symbols between [min, max]

template<typename T, T _min, T _max, typename NameT> class ContiguousAlphabet {...};

o Alphabet of contiguous range of symbols between [0, max]

template<typename T, T _max, typename NameT> class ZeroBoundContiguousAlphabet {...};

o Alphabet for an n-bit field, contiguous range [0, 2"]

template<typename T, std::size_t n, typename NameT> class ZeroBoundContiguousAlphabet {...};

Examples (omitting name template parameter):

typedef ContiguousAlphabet<int, -16384, 16383 > MyContiguousAlphabetType;
typedef ZeroBoundContiguousAlphabet<int16_t, 1000 > MyZeroBoundAlphabetType;

typedef BitRangeContiguousAlphabet<int8_t, 6 > My6BitAlphabetType;
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Multiple parameters

The runtime objects have multiple parameters with individual probability

models, the parameters need to be stored in a continuous sequence.

To define sets of parameter types at compile time, the framework makes

use of the boost Metaprogramming Library.

typedef boost::mpl::vector<
BitRangeContiguousAlphabet<inti6_t,
ContiguousAlphabet<int16_t, -16384,
ContiguousAlphabet<int16_t, -32768,
BitRangeContiguousAlphabet<int16_t,
BitRangeContiguousAlphabet<int16_t,
BitRangeContiguousAlphabet<int16_t,

ZeroBoundContiguousAlphabet<int16_t, 1000

> tpccluster_parameter;

6 , boost:
16383 , boost:
32767 , boost:

8 , boost:

8 , boost:

16 , boost:
, boost:

@ Can mix different types of alphabets.

cmpl:
cmpl:
cmpl:
cmpl:
cmpl:
cmpl:
cmpl:

@ Again, this is a data type without a state.
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