

Online computing architecture for the CBM experiment at FAIR

Jan de Cuveland cuveland@compeng.uni-frankfurt.de

Prof. Dr. Volker Lindenstruth FIAS Frankfurt Institute for Advanced Studies Goethe-Universität Frankfurt am Main, Germany

CHEP 2016 Conference 2016-10-11 in San Francisco, USA

The CBM Experiment at FAIR

- Fixed target heavy ion experiment
- Under construction (time frame similar to LHC Run3)
- Physics goal: exploration of the QCD phase diagram at highest baryon densities and moderate temperatures
- $E_{kin} = 2.0 35 \text{ A GeV}$ $\sqrt{s_{NN}} = 2.7 - 8.3 \text{ GeV}$
- 10⁵ 10⁷ Hz interaction rates
- Modular detector setup

CBM Challenges

- Extreme reaction rates up to 10 MHz
- Up to 1000 charged tracks in aperture
- Hit densities up to 1/mm²
- High-precision vertex reconstruction
- Identification of leptons and hadrons

- No conventional trigger architecture possible
 - → Self-triggering readout electronics
- Full online event reconstruction needed
 - → Event selection exclusively done in a highperformance computing cluster

FAIR Data Center "Green-IT Cube"

Outline

- 780 water-cooled racks in 3-D architecture
- Max cooling power: 12 MW
- Fully redundant (N+1), target PUE: 1.05
- Location of CBM online computing
 - Cost-efficient infrastructure sharing
 - Maximum CBM online computing power only needed in a fraction of time
 → combine and share computing resources
- Fiber lengths to experiment site approx. 700 m

CBM Readout Structure

Detector Front-ends

- Self-triggering front-end
- 10⁷ events/s
- Data push architecture
- All hits shipped to FLES

FLES Input Interface

- FPGA-based PCle board
- Long-distance links to front-end
- Preprocessing and indexing for timeslice building

High-throughput event building

- >1 TByte/s input data rate
- ~ 1000 input streams
- RDMA-enabled network
- Deliver global timeslices to reconstruction code

Online Event Selection

- HPC processor farm with FPGAs,
 GPUs and fast interconnect
- ~ 60.000 cores
- Fast, vectorized many-core track reconstruction algorithms
- Full event reconstruction

CBM Online Computing

Detector Front-ends

- Autonomous hit detection and zerosuppression
- Associate time
 stamp with each hit,
 aggregate data

Data Processing Board (DPB)

- Local data preprocessing:
 Feature extraction, time sort messages, data reformatting, merging input streams
- Convert to **global time**

FLES Interface Board (FLIB)

 Time indexing and buffering of microslices

FLES Nodes

- Calibration and global feature extraction
- Tracking in 4 dimensions (including time)
- Full reconstruction, associate hits with events
- Identification of leptons and hadrons
- High-precision vertex reconstruction
- Event selection

First-level Event Selector (FLES) Architecture

- FLES is designed as an HPC cluster
 - Commodity PC hardware
 - GPGPU accelerators
 - Custom input interface
- Total input data rate >1 TB/s
- InfiniBand network for timeslice building
 - RDMA data transfer, very convenient for timeslice building
- Flat structure w/o dedicated input nodes Inputs are distributed over the cluster
 - Makes use of full-duplex bidirectional InfiniBand bandwidth
 - Input data is concise, no need for processing before timeslice building

- Decision on actual commodity hardware components as late as possible
 - First phase: full input connectivity, but limited processing and networking

FLES Data Management Framework

- RDMA-based timeslice building (flesnet)
- Works in close conjunction with FLIB hardware design
- Paradigms:
 - Do not copy data in memory
 - Maximize throughput
- Based on microslices, configurable overlap
- Delivers fully built timeslice to reconstruction code

- Direct DMA to InfiniBand send buffers
- Shared memory interface Indexed access to Timeslice building timeslice data • 10 GBit/s custom • InfiniBand RDMA, true zero-copy optical link TS-TS-**FLIB** Reco/ Building Building Server Ana CN IN SHM SHM **Device Driver IB Verbs IB Verbs FLIB** FEE **HCA HCA**
 - Prototype implementation available
 - C++, Boost, IB verbs
 - Measured flesnet timeslice building (8+8 nodes, including ring buffer synchronization, overlapping timeslices):
 - ~5 GByte/s throughput per node
 - Prototype software successfully used in several CBM beam tests

FLES Input Interface

- FPGA-based PCle board: FLIB
 - Consumes microslices received from DPBs
 - Prepares and indexes microslices for timeslice building
 - Transfers microslices and index data to PC memory
- Custom PCIe DMA interface
- Optimized data scheme for zero-copy timeslice building
- Common HDL interface module in front-end
- Status
 - Complete design available, implemented on HTG-K7 development board
 - Combined FLIB and DPB functionalities for beam test usage available
 - Successfully used in numerous setups

Measured FLIB PCIe throughput

Poster presentation today at 15:30 by **D. Hutter**

FLES Input Data Path

Dual Ring Buffer in Shared Memory

Microslice

- Timeslice substructure
- Constant in experiment time
- Allow overlapping timeslices

- Full offload DMA engine
- Transmit microslices via PCIe/DMA directly to userspace buffers
 - Buffer placed in Posix shared memory, can be registered in parallel for InfiniBand RDMA
- Pair of ring buffers for each link
 - Data buffer for microslice data content
 - Descriptor buffer for index table and microslice meta data

RDMA Timeslice Building

- Two pairs of ring buffers for each input link
 - Second buffer: index table to variable-sized data in first buffer
- Copy contiguous block of microslices via RDMA (exception: borders)
- Lazy update of buffer status between nodes, reduce transaction rate

Interface to Online Reconstruction Code

Timeslice

- Two-dimensional indexed access to microslices
- Overlap according to detector time precision
- Interface to online reconstruction software

- Basic idea: For each timeslice, an instance of the reconstruction code...
 - ...is given direct indexed access to all corresponding data
 - ...uses **detector-specific** code to understand the **contents** of the microslices
 - ...applies **adjustments** (fine calibration) to detector time stamps if necessary
 - …finds, reconstructs and analyzes the contained events
- Timeslice data management concept
 - Timeslice is self-contained
 - Calibration and configuration data distributed to all nodes
 - No network communication required during reconstruction and analysis

Online Event Selection

- Full online event reconstruction prior to selection
- High-throughput, up to 10⁷ events/s
- No event separation by previous trigger
- Overlapping events
- Reconstruction in 4-D (including time)
- Same code in online and offline analysis
- Extensive use of vectorization (SIMD) and many-core architectures (e.g., GPU)

Parallel speed-up of CBM reconstruction [I. Kisel]

Massive parallelization

- Many independent processing nodes
- Multiple timeslices simultaneously per node
- Multi-threaded, vectorized reconstruction code

Provided byframework

FLES Network Performance Study

- Standard routing pattern suboptimal for continuous allto-all communication
- Optimized routing scheme leads to excellent performance (>5 GB/s per node) (tested on for 24 nodes using InfiniBand verbs and custom MPI benchmark)

Summary

Compressed Baryonic Matter (CBM) experiment at FAIR

- High event rates (10⁷ Hz), complex global triggers
- Self-triggered detector front-ends
- Data push readout architecture

- HPC processor farm including FPGAs (at input stages) and heterogenous many-core architectures (e.g., GPUs)
- >1 TByte/s input data stream
- Timeslice building in RDMA-enabled network
- 4-D event reconstruction using fast, vectorized track reconstruction algorithms

Online computing architecture – status

- Demonstrator implementations available, data chain field-tested in beam tests
- Architecture still being refined towards final system
- Aim for first phase: full input connectivity, but limited processing and networking

Thanks for your attention

SPONSORED BY THE

Jan de Cuveland cuveland@compeng.uni-frankfurt.de

CBM