
13.10.2016

GPU-accelerated track reconstruction in the

ALICE High Level Trigger

David Rohr for the ALICE Collaboration

Frankfurt Institute for Advanced Studies

CHEP 2016, San Francisco

13.10.2016

1 13.10.2016

• The Large Hadron Collider (LHC) at

 CERN is today‘s most powerful

 particle accelerator colliding protons

 and lead ions.

• ALICE is one of the four

 major experiments,

 designed primarily for

 heavy ion studies.

• The Time Projection

 Chamber (TPC) is ALICE’

 primary detector for

 track reconstruction.

• The High Level trigger

 (HLT) is an online compute

 farm for real-time data

 reconstruction for ALICE.

ALICE at the LHC

2 13.10.2016

Track reconstruction in ALICE

• The HLT performs online reconstruction of all events recorded by the ALICE detector in real time.

• Tracking is the most time consuming task in online event reconstruction.

• We use GPUs as hardware accelerators to speed up tracking and save costs on the online compute farm.

• GPU Tracking originally developed for Run 1.

• Implementation not necessarily optimal for nowadays GPUs.

• We want to improve GPU utilization for Run 2/3, and use available GPU capacity for new features.

• Current tracker sufficient for all Run 2 scenarios.

• Instead of improving performance for the current GPU generation, we rather aim at new features.

• Current Run 2 computing farm can also be used as playground for Run 3.

3 13.10.2016

Tracking Algorithm

• TPC Volume is split in 36 sectors.

 The tracker processes each sector individually.

 Increases data locality, reduce network bandwidth, but reduces parallelism.

 Each sector has 160 read out rows in radial direction.

 Tracking runs in 2 phases:

• 1. Phase: Sector-Tracking (within a sector)

 Heuristic, combinatorial search for track seeds using a

Cellular Automaton.

 A) Looks for three hits composing a straight line (link).

 B) Concatenates links.

 Fit of track parameters, extrapolation of track, and search for additional

clusters using the Kalman Filter.

• 2. Phase: Track-Merger

 Combines the track segments found in the individual sectors.

4 13.10.2016

New processing scheme needed

• The task scheduling for the tracking was originally developed for GTX285 GPUs.

• Original scheme limited because old GPUs could not execute 2 different kernels at a time.

• 1st step of tracking is local in one TCP sector, processing of sectors arranged in a pipeline.

• Some steps, in particular tracklet construction cannot exploit enough parallelism in one sector.

 Combined processing of multiple sectors.

• The pipeline ensures that the GPU does not idle,

• BUT, utilization within a single kernel is not necessarily optimal.

1 TPC Sector each

(enough parallelism

1 thread per cluster)

All TPC Sectors in parallel

(1 thread per track,

Many sectors needed for sufficient parallelism)

1 to 3 sectors at a time

1 thread per track

Memory bound

less tracks needed

5 13.10.2016

New processing scheme

• Problem: Too few tracks (and too few clusters in one sector) to load all compute units of modern GPUs.

• Idea:

• Use n command queues

• Queues processing for all TPC sector on the queues in a round-robin fashion.

• Each kernel will always only process one step for one sector, occupy only few GPU cores.

• GPU scheduler will place multiple kernels concurrently.

• DMA transfer back to host needs to know number of found tracks.

• In order to avoid synchronization, we copy an estimated upper bound of tracks.

• If too many are copied, doesn’t matter, there is plenty of DMA bandwidth and tracks are small.

• If too few are copied, we can fetch the remaining ones in a second go.

 Only one synchronization at the very end of processing is needed.

• First test shows already 20% faster processing with a simple modification.

Command Queue 1

Command Queue 2

Command Queue 3

Command Queue 4

Number of

queues is a

parameter,

can match 8

hardware

queues on

AMD for

instance.

round-robin

Kernels for

one TPC sector

Time

6 13.10.2016

Current setup & maximum rates

• A simple alternative to increase GPU utilization.

• We can run multiple instances of the GPU tracker on multiple events in parallel (without further tuning).

• GPU parallelization also over events, on top of tracks / clusters.

• Tracking time of 1 instance: 145 ms (Full central PbPb).

• Tracking time of 2 instances: 220 ms (110 ms / event).

• Speedup because of better GPU resource usage. Even a full central PbPb event can no longer utilize all ALUs of

modern GPUs (this was different some years ago when we started to use GPUs in the HLT).

 The speedup is much larger for smaller events.

• Currently deployed in the HLT for Run 2: Maximum HLT tracking rate is 40.000.000 tracks / second.

• Only events with all detectors in

• pp (PbPb Reference run, Run 244364, TPC, ITS, EMCAL, V0, ZDC): 4.5 kHz (Limit: CPU)

• pp (13 TeV, 25 ns, Run 239401, TPC, ITS, EMCAL, C0, ZDC): 2.4 kHz (Limit: RCU2 bandwidth)

• PbPb (Max Luminosity, Run 245683, TPC, ITS, EMCAL, V0, ZDC): 950 Hz (Limit: RCU2 bandwidth)

• PbPb (Run 245683, local TPC Reco only, no data transport): 2.5 kHz (Limit: GPU)

• GPU resources are used at maximum to 45% (assuming max TPC read out).

• Use available GPU resources for other reconstruction tasks.

7 13.10.2016

Concurrent event processing

• We want to try new features needed for O2 already now in the HLT (e.g. online calibration).

• GPU Memory usage of TPC tracking is below 1 GB, GPUs in ALICE HLT have 6 GB, in some years 32+ GB.

• At very high rates, processing all events individually is inefficient.

• E.g. ALICE HLT framework currently limited at 6 kHz.

• It is better to combine multiple events, and process them jointly.

• ALICE will inherently do this with time frames in continuous read out.

• This will also make sure the GPUs are fully utilized.

• This is possible, because tracking time goes linear with input data size.

• Depending on time frame size, we might need to stream the time-frame through the GPU in slices (along z).

• We can use GPU scheduling queue as presented in optimized Run2 scheme.

• From Run 1 / 2 experience, we know that pipelines processing of TPC subvolumes works very well.

• GPU memory is large enough to hold large slices offering sufficient parallelism.

8 13.10.2016

• If we bring more tasks to the GPU,

we should avoid GPU/Host copies.

• All intermediate steps must run

on GPU. (Running only the track

fit produces infeasible overhead.

• We have to evaluate which (consecutive) components can use GPU efficiently.

• The entire tracking chain seems a good candidate.

TPC Cluster

Transformation

TPC Global

Merger

In-Sector

Merging

Between-Sector

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track

Finder

CA Track

Seeding

Kalman Track

Following

GPU Buffer Management

GPU

Tracker

Buffer

Fit

Buffer

Shared

Buffer

TPC/ITS Tracker Component

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared

Buffer

Shared

Buffer

Shared

Buffer

Shared

Buffer

Input

Output

For Run 3, we want to merge

transformation and Tracking.

Current HLT TPC / ITS Tracking

9 13.10.2016

• All intermediate shared buffers

on GPU.

• We keep the current component

structure, and we create a

super-component that runs

everything at once on GPU.

TPC Cluster

Transformation

TPC Global

Merger

In-Sector

Merging

Between-Sector

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track

Finder

CA Track

Seeding

Kalman Track

Following

GPU Buffer Management

GPU

Shared

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared

Buffer

Shared

Buffer

Shared

Buffer

Shared

Buffer

Input

Output

Shared

Buffer

Shared

Buffer

GPU Tracking Super-Component

TPC/ITS Tracker Component

P
o

s
tp

o
n

e
 T

ra
c
k
 fit

a
fte

r IT
S

 p
ro

p
a

g
a

tio
n

Next developments in tracking

10 13.10.2016

• TRD prolongation could run in parallel to ITS prolongation, final track fit afterward.

• We could add dE/dx to final track fit. New track-based compression needs refit suited for GPUs.

TPC Cluster

Transformation

TPC Global

Merger

In-Sector

Merging

Between-Sector

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track

Finder

CA Track

Seeding

Kalman Track

Following

GPU Buffer Management

Shared

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared

Buffer

Shared

Buffer

Shared

Buffer

Shared

Buffer

Shared

Buffer

GPU Tracking Super-Component

TPC/ITS Tracker Component

TPC / TRD

Matching

TPC/TRD Tracker Component

Shared

Buffer

Shared

Buffer
Final TPC / TRD / ITS Track Fit & dE/dx

Shared

Buffer

Output
Shared

Buffer

Input

Next developments in tracking

11 13.10.2016

• HLT track reconstruction fast enough to cope with all trigger scenarios in Run 2 and with the

maximum TPD DDL link rate.

• Tracker has a common source code for CPU / OpenCL / CUDA yielding consistent results.

• 180 compute nodes with GPUs in the HLT

• Since 2012 in 24/7 operation, no problems yet.

• Cost savings compared to an approach with traditional CPUs:

• About 500.000 US dollar during ALICE Run I.

• Above 1.000.000 US dollar during Run II.

• Mandatory for future experiments, e.g. CBM (FAIR, GSI) and ALICE upgrade with >1TB/s data rate.

• Can be used to test new online tracking features for Run III.

• We are now looking into optimizations for new GPU architectures, but not yet specific to one model.

• Plan to bring more components onto the GPU, reduce PCIe transfer, keep component structure.

• Using GPUs with more memory, we are confident to process timeframes similarly to events today.

Summary

