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•  The Large Hadron Collider (LHC) at 

 CERN is today‘s most powerful 

 particle accelerator colliding protons 

 and lead ions. 

•  ALICE is one of the four 

 major experiments, 

 designed primarily for 

 heavy ion studies. 

•  The Time Projection 

 Chamber (TPC) is ALICE’ 

 primary detector for 

 track reconstruction. 

•  The High Level trigger 

 (HLT) is an online compute 

 farm for real-time data 

 reconstruction for ALICE. 

ALICE at the LHC 
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Track reconstruction in ALICE 

• The HLT performs online reconstruction of all events recorded by the ALICE detector in real time. 

 

• Tracking is the most time consuming task in online event reconstruction. 

 

• We use GPUs as hardware accelerators to speed up tracking and save costs on the online compute farm. 

 

• GPU Tracking originally developed for Run 1. 

• Implementation not necessarily optimal for nowadays GPUs. 

• We want to improve GPU utilization for Run 2/3, and use available GPU capacity for new features. 

 

• Current tracker sufficient for all Run 2 scenarios. 

• Instead of improving performance for the current GPU generation, we rather aim at new features. 

• Current Run 2 computing farm can also be used as playground for Run 3. 
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Tracking Algorithm 

• TPC Volume is split in 36 sectors. 

 The tracker processes each sector individually. 

 Increases data locality, reduce network bandwidth, but reduces parallelism. 

 Each sector has 160 read out rows in radial direction. 

 Tracking runs in 2 phases: 

 

• 1. Phase: Sector-Tracking (within a sector) 

 Heuristic, combinatorial search for track seeds using a 

Cellular Automaton. 

 A) Looks for three hits composing a straight line (link). 

 B) Concatenates links. 

 

 Fit of track parameters, extrapolation of track, and search for additional 

clusters using the Kalman Filter. 

 

• 2. Phase: Track-Merger  

 Combines the track segments found in the individual sectors. 
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New processing scheme needed 

• The task scheduling for the tracking was originally developed for GTX285 GPUs. 

• Original scheme limited because old GPUs could not execute 2 different kernels at a time. 

• 1st step of tracking is local in one TCP sector, processing of sectors arranged in a pipeline. 

• Some steps, in particular tracklet construction cannot exploit enough parallelism in one sector. 

 Combined processing of multiple sectors. 

 

 

 

 

 

 

 

 

 
 

• The pipeline ensures that the GPU does not idle, 

• BUT,  utilization within a single kernel is not necessarily optimal. 

 

1 TPC Sector each 

(enough parallelism 

1 thread per cluster) 

All TPC Sectors in parallel 

(1 thread per track, 

Many sectors needed for sufficient parallelism) 

1 to 3 sectors at a time 

1 thread per track 

Memory bound 

less tracks needed 
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New processing scheme 

• Problem: Too few tracks (and too few clusters in one sector) to load all compute units of modern GPUs. 

 

 

 

 

• Idea: 

• Use n command queues 

• Queues processing for all TPC sector on the queues in a round-robin fashion. 

• Each kernel will always only process one step for one sector, occupy only few GPU cores. 

• GPU scheduler will place multiple kernels concurrently. 
 

• DMA transfer back to host needs to know number of found tracks. 

• In order to avoid synchronization, we copy an estimated upper bound of tracks. 

• If too many are copied, doesn’t matter, there is plenty of DMA bandwidth and tracks are small. 

• If too few are copied, we can fetch the remaining ones in a second go. 

 Only one synchronization at the very end of processing is needed. 
 

• First test shows already 20% faster processing with a simple modification. 

Command Queue 1 

Command Queue 2 

Command Queue 3 

Command Queue 4 

Number of 

queues is a 

parameter, 

can match 8 

hardware 

queues on 

AMD for 

instance. 

round-robin 

Kernels for 

one TPC sector 

Time 
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Current setup & maximum rates 

• A simple alternative to increase GPU utilization. 

• We can run multiple instances of the GPU tracker on multiple events in parallel (without further tuning). 

• GPU parallelization also over events, on top of tracks / clusters. 

• Tracking time of 1 instance: 145 ms (Full central PbPb). 

• Tracking time of 2 instances: 220 ms (110 ms / event). 

• Speedup because of better GPU resource usage. Even a full central PbPb event can no longer utilize all ALUs of 

modern GPUs (this was different some years ago when we started to use GPUs in the HLT). 

 The speedup is much larger for smaller events. 

• Currently deployed in the HLT for Run 2: Maximum HLT tracking rate is 40.000.000 tracks / second. 
 

• Only events with all detectors in 

• pp (PbPb Reference run, Run 244364, TPC, ITS, EMCAL,  V0, ZDC): 4.5 kHz (Limit: CPU) 

• pp (13 TeV, 25 ns, Run 239401, TPC, ITS, EMCAL, C0, ZDC): 2.4 kHz (Limit: RCU2 bandwidth) 

• PbPb (Max Luminosity, Run 245683, TPC, ITS, EMCAL, V0, ZDC): 950 Hz  (Limit: RCU2 bandwidth) 

• PbPb (Run 245683, local TPC Reco only, no data transport): 2.5 kHz (Limit: GPU) 

• GPU resources are used at maximum to 45% (assuming max TPC read out). 

• Use available GPU resources for other reconstruction tasks. 
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Concurrent event processing 

• We want to try new features needed for O2 already now in the HLT (e.g. online calibration). 

• GPU Memory usage of TPC tracking is below 1 GB, GPUs in ALICE HLT have 6 GB, in some years 32+ GB. 

 

 

• At very high rates, processing all events individually is inefficient. 

• E.g. ALICE HLT framework currently limited at 6 kHz. 

• It is better to combine multiple events, and process them jointly. 

• ALICE will inherently do this with time frames in continuous read out. 

• This will also make sure the GPUs are fully utilized. 

• This is possible, because tracking time goes linear with input data size. 

 

 

• Depending on time frame size, we might need to stream the time-frame through the GPU in slices (along z). 

• We can use GPU scheduling queue as presented in optimized Run2 scheme. 

• From Run 1 / 2 experience, we know that pipelines processing of TPC subvolumes works very well. 

• GPU memory is large enough to hold large slices offering sufficient parallelism. 
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• If we bring more tasks to the GPU, 

we should avoid GPU/Host copies. 

• All intermediate steps must run 

on GPU. (Running only the track 

fit produces infeasible overhead. 

• We have to evaluate which (consecutive) components can use GPU efficiently. 

• The entire tracking chain seems a good candidate. 
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Current HLT TPC / ITS Tracking 
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• All intermediate shared buffers 

on GPU. 

• We keep the current component 

structure, and we create a 

super-component that runs 

everything at once on GPU. 
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Next developments in tracking 
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• TRD prolongation could run in parallel to ITS prolongation, final track fit afterward. 

• We could add dE/dx to final track fit. New track-based compression needs refit suited for GPUs. 
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• HLT track reconstruction fast enough to cope with all trigger scenarios in Run 2 and with the 

maximum TPD DDL link rate. 
 

• Tracker has a common source code for CPU / OpenCL / CUDA yielding consistent results. 
 

• 180 compute nodes with GPUs in the HLT 

• Since 2012 in 24/7 operation, no problems yet. 
 

• Cost savings compared to an approach with traditional CPUs: 

• About 500.000 US dollar during ALICE Run I. 

• Above 1.000.000 US dollar during Run II. 

• Mandatory for future experiments, e.g. CBM (FAIR, GSI) and ALICE upgrade with >1TB/s data rate. 

• Can be used to test new online tracking features for Run III. 

 

• We are now looking into optimizations for new GPU architectures, but not yet specific to one model. 

• Plan to bring more components onto the GPU, reduce PCIe transfer, keep component structure. 

• Using GPUs with more memory, we are confident to process timeframes similarly to events today. 

 
 

Summary 


