
10.10.2016

Improvements of the ALICE HLT data transport

framework for LHC Run 2

David Rohr for the ALICE Collaboration

Frankfurt Institute for Advanced Studies

CHEP 2016, San Francisco

10.10.2016

1 10.10.2016

• The Large Hadron Collider (LHC) at

 CERN is today‘s most powerful

 particle accelerator colliding protons

 and lead ions.

• ALICE is one of the four

 major experiments,

 designed primarily for

 heavy ion studies.

• The Time Projection

 Chamber (TPC) is ALICE’

 primary detector for

 track reconstruction.

• The High Level trigger

 (HLT) is an online compute

 farm for real-time data

 reconstruction for ALICE.

ALICE at the LHC

2 10.10.2016

Challenges for framework

• High Date Rate

• The HLT processes an incoming date rate of up to 50 GB/s. This data must be distributed in the cluster and processed in real-

time with low latency.

• High Event Rate

• Event rate does not depend on data rate, although it is related.

• Fast detectors can send a very high event rate at low data rates.

• The challenge is not the data size, but the merging of event fragments received on different links at high rate.

• CPU load

• The data transport should use as little CPU resources as possible to leave the capacity for processing.

• Startup and configuration

• The HLT needs to configure all the processes at start of run for the current run / trigger / detector configuration.

• Startup should not take longer than for the detectors in order not to waste beam time.

• New framework features for new task (online QA, online calibration).

• Differences to ALICE run 1:

• Higher event / data rate, e.g. faster TPC read out with new RCU2 readout card (twice the bandwidth).

• Aim to run more processing and QA components for more detectors than before.

3 10.10.2016

Estimate worst case TPC scenario

• For compute performance stress test, we use data replay of Pb-Pb events from Run 245683.

• (Run was above design luminosity for a short time  biggest events)

• In this way, we determine the maximum data / event rate.

• Worst case analysis: the TPC with RCU2 runs at 3.125 GHz

 Maximum possible data rate:

• ~ 280 MB/s per link with max occupancy, or 50 GB/s in total.

‒ Corresponds to 1.377 GB/s per input node.

‒ Translates to maximum output of 1.53 GB/s per output node.

‒ Infiniband IPoIB transfer above 2.4 GB/s.

• The total output data rate (compressed TPC clusters, ESD) of the entire HLT in this scenario is 10.7 GB/s.

‒ Data output to DAQ has been tested up to 12 GB/s.

• Overall, from processing, network, and DDL perspectives, HLT can handle the maximum rate.

• Other detectors are a different story:

• With TPC readout of 500 Hz, other detectors might have few kHz.

• Then, our bottleneck is the event merging of the many (small) events.

• The problem is not the big TPC events.

TPC Input

216 Links

36 Nodes

Other

Inputs

172

Compute

Nodes

8

Output

Nodes
round

robin

merge

events

round

robin

Only logical distinction,

can be the same node

4 10.10.2016

Optimization steps

• Event merger:

• Use hash-based lists for fast indexing

• No single bottleneck exists in the merger:

• Much time used for spinlocks and gettimeofday (for nanosleep), many context switches.

– Often no accurate time needed, some delays are accepted to avoid context switches.

• One bottleneck were system calls to read / write for the named pipes.

 Named pipes are now replaced by shared memory based communication.

• We reduce the rate of PubSub messages to the merger, or merge messages (e.g. merge messages).

 Merger (on its own) can now operate with up to 6 kHz with 12 Inputs (maximum due to 12 DDLs per FEP).

– (12 inputs is the maximum we can have from our Read Out Receiver Card (C-RORC).)

• Highest expected rate for 2016 Data Taking is 2 kHz central barrel + ~1-2 kHz from fast detectors.

5 10.10.2016

Possible rates

• Maximum event rates measured in data replay.

• Selection test scenarios (all detectors in):

• Single Publisher (ZDC) without Event Merger on FEP: > 10 kHz.

• pp (PbPb Reference run, Run 244364, TPC, ITS, EMCAL, V0, ZDC): 4.5 kHz (Limit: CPU)

• pp (13 TeV, 25 ns, Run 239401, TPC, ITS, EMCAL, C0, ZDC): 2.4 kHz (Limit: RCU2 bandwidth)

• PbPb (Max Luminosity, Run 245683, TPC, ITS, EMCAL, V0, ZDC): 950 Hz (Limit: RCU2 bandwidth)

• PbPb (Run 245683, Without TPC, Only ITS, EMCAL, V0, ZDC): 6 kHz (Limit: Event merger)

• PbPb (Run 245683, local TPC Reco only, no data transport): 2.5 kHz (Limit: CPU / GPU)

• Before, the limit was 500 Hz instead of 950 Hz and 3 kHz instead of 6 kHz.

• Real scenario with real event mix (not all detectors always in):

• PbPb (Run 245683) 950 Hz TPC, 3.75 kHz Total

• pp (Run 239401) 2.4 kHz TPC, 6 kHz Total

• Since beginning of 2016, there has not been a single run that failed because HLT could not keep up the rate.

6 10.10.2016

Configuration improvements

• Run coordination asked us to improve the configuration to reduce ALICE startup time

• Main driver: MakeConfig python script, takes up to 210 seconds.

‒ Read config input: 30 down to 1.5 seconds.

‒ Create process list: 160 down to 13 seconds.

‒ Write output: 20 down to 2 seconds (through python-multiprocessing).

 Total now: 16.7 seconds

• Besides the MakeConfig script, other minor tasks have

been improved, or hidden in the shadow of MakeConfig.

• Total configure time improvement: 215 seconds down

to 18 seconds.

Analysis of startup times before improvements.

HLT was in the shadow of detectors,

which improved in the meantime.
From Vasco Barroso, Run 2 2015 closeout workshop.

7 10.10.2016

Engage and configure time

• Another task was to reduce the engage time:

• There was much less margin than for configure. Via software improvements, we could reduce the engage

time from 32s to 22s.

• We can move some steps from the engage step to the configure step.

• This has a negative effect on the possible parallelization during startup.

 Engage time goes down.

 Configure time grows.

 Total time goes up slightly (+1 second for creation and distribution of GRP object.)

• Engage 22.5 secs to 16.5 secs.

• Configure 15.5 secs to 22.5 secs.

– (Different configure time than before due to slightly different setup.)

• Both for configuration and for engage the HLT is now in the shadow of either DAQ or of multiple

detectors. HLT never delays the start of a run.

• Also: all race conditions and problems with ECS interface fixed ensuring constant startup time – no

startup failures (except for obvious regions – wrong B-field) any more this year.

8 10.10.2016

Total CPU load reduction:

• Benchmark at high rate processing for maximum framework load

• Rate: 3 kHz  6 kHz

• Event Merger: 240%  200%

• TaskManager: 100%  30%

• RORCPublisher: 12 * 75%  12 * 30%

• DataRelay: 80%  0%

• EventScatterer: 80%  60%

• Sum: 1200%  650%

• This frees up plenty of CPU resources on the FEP.

• Some individual components with very high compute load.

• Mostly the TPC components.

9 10.10.2016

Processing Time Overview

• Black bars show system load in kernel space.

• Framework has

significant system load

for data transport.

• TPC has some system

load for DMA transfer

to GPU.

• Overall, framework load

is not dominant.

10 10.10.2016

• Approach for asynchronous processing:

Split processing in synchronous and asynchronous part.

 Frameworks spawns an asynchronous thread.

 It provides simple interface to

the component for offloading

asynchronous tasks.

 It handles the synchronization.

• Task runs in a different process

 Resilient to segmentation faults.

 Cannot affect normal operation.

Asynchronous Side Tasks

P
ro

c
e
s
s
 E

v
e
n

t

time

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

Long-running task

Incoming Events

event

queue

maximum

queue size

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

P
ro

c
e
s
s
 E

v
e
n

t

asynchronous

part started
asynchronous

part finished

11 10.10.2016

New Zero-MQ based message transport

• Some features were not feasible with the original HLT data transport:

• HLT framework is a loop-free directed graph  no feedback loop.

• New ZeroMQ transport as additional transport mechanism

• Similar message based approach as in the HLT itself.

• Works also as prototype implementation for O2.

• Used in the HLT for online calibration feedback loop.

• All new online QA components and the event display use this new approach.

• Transparent inclusion in HLT configuration:

• ZMQ sources / sinks take messages from HLT framework and forward via ZeroMQ.

12 10.10.2016

TPC

Link 1

TPC
Link 216

TPC Clus-

ter Finder

ITS

Links

.

.

ZDC Re-

construction

Output

Link 1

Output

Link 28

Event

Building

TPC Branch

Merging

TPC Trans-

formation

Input

FPGA CRORC
(66 FEP Nodes)

ZDC

Links

VZERO

Links

EMCAL

Links

TPC GPU

TRACK

FINDING

TPC Merger

 & Track Fit

TPC / ITS

Tracking

ESD

VZERO Re-

construction

EMCAL Re-

construction

.

.

TPC Clus-

ter Finder

180 Compute Nodes – 180 Instances of Reconstruction Chain

Output
(8 HLTout Nodes)

TPC

Compression

Global

Trigger

Other
Detector

Moni-

toring

Side

Chain

Pass

Through

1 Monitor Node

Triggers Triggers Triggers

ITS SPD

Vertexer

Global

Vertexer
ITS Clusterer

Transient Failure-

Resilient Subscription

Overview of Run 1 HLT components

13 10.10.2016

TPC

Link 1

TPC
Link 216

TPC Clus-

ter Finder

ITS

Links

.

.

ZDC Re-

construction

Output

Link 1

Output

Link 28

Event

Building

Sensor

Data

TPC Branch

Merging

TPC Trans-

formation
(2 Instances)

Input

FPGA CRORC
(66 FEP Nodes)

ZDC

Links

VZERO

Links

EMCAL

Links

DIM from ECS

TPC GPU

TRACK

FINDING

TPC Merger

 & Track Fit

TPC / ITS

Tracking

ITS standa-

lone tracking

ESD

Flat

ESD

VZERO Re-

construction

EMCAL Re-

construction

.

.

Luminous

Region

Prompt

QA
EMCAL

QA

TPC Clus-

ter Finder

180 Compute Nodes – 180 Instances of Reconstruction Chain

Calibration

Merger
Calib

Output

TPC Offline

Preprocessor

Transformation

Preparation

ZeroMQ QA Output

ZeroMQ Feedback Loop

Output
(8 HLTout Nodes)

Calibration Node

TPC

Compression

Global

Trigger

Other
Detector

Moni-

toring

Side

Chain

Default OCDB Calibration

Pass

Through

…Future Components

ZMQ

To FXS

1 Monitor Node

Triggers

ITS SPD

Vertexer

Global

Vertexer
ITS Clusterer

Asynchronous Failure-

Resilient Components

Transient Failure-

Resilient Subscription

ZMQ QA

Config

Overview of current HLT components

Calibration

Online QA

ZeroMQ

data

mergers

LHC

DQM

…

14 10.10.2016

Summary

• HLT framework throughput improved:

• Can cope with any data and event rate expected for run 2.

• Can process TPC data at maximum link speed of 50 GB/s.

• Event mergers with highest load of 12 links operate at up to 6 kHz.

• Framework load reduced significantly, leaving more resources for reconstruction tasks.

• HLT Startup time improved  never delays the start of run.

• Main improvement step:

• Improve inter-process communication via shared memory.

• Redesign processing graph for better load-balancing.

• Speed up python configuration scripts, use multi-processing in python.

• New feature added:

• Feedback loop and asynchronous processes enable online calibration.

• ZeroMQ transport added for calibration and for online QA.

• Asynchronous processes protected against fatal errors like segmentation violations.

