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•  The Large Hadron Collider (LHC) at 

 CERN is today‘s most powerful 

 particle accelerator colliding protons 

 and lead ions. 

•  ALICE is one of the four 

 major experiments, 

 designed primarily for 

 heavy ion studies. 

•  The Time Projection 

 Chamber (TPC) is ALICE’ 

 primary detector for 

 track reconstruction. 

•  The High Level trigger 

 (HLT) is an online compute 

 farm for real-time data 

 reconstruction for ALICE. 

ALICE at the LHC 
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Challenges for framework 

• High Date Rate 

• The HLT processes an incoming date rate of up to 50 GB/s. This data must be distributed in the cluster and processed in real-

time with low latency. 
 

• High Event Rate 

• Event rate does not depend on data rate, although it is related. 

• Fast detectors can send a very high event rate at low data rates. 

• The challenge is not the data size, but the merging of event fragments received on different links at high rate. 
 

• CPU load 

• The data transport should use as little CPU resources as possible to leave the capacity for processing. 
 

• Startup and configuration 

• The HLT needs to configure all the processes at start of run for the current run / trigger / detector configuration. 

• Startup should not take longer than for the detectors in order not to waste beam time. 
 

• New framework features for new task (online QA, online calibration). 
 

• Differences to ALICE run 1: 

• Higher event / data rate, e.g. faster TPC read out with new RCU2 readout card (twice the bandwidth). 

• Aim to run more processing and QA components for more detectors than before. 
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Estimate worst case TPC scenario 

• For compute performance stress test, we use data replay of Pb-Pb events from Run 245683. 

• (Run was above design luminosity for a short time  biggest events) 
 

• In this way, we determine the maximum data / event rate. 
 

• Worst case analysis: the TPC with RCU2 runs at 3.125 GHz 

 Maximum possible data rate: 

• ~ 280 MB/s per link with max occupancy, or 50 GB/s in total. 

‒ Corresponds to 1.377 GB/s per input node. 

‒ Translates to maximum output of 1.53 GB/s per output node. 

‒ Infiniband IPoIB transfer above 2.4 GB/s. 

• The total output data rate (compressed TPC clusters, ESD) of the entire HLT in this scenario is 10.7 GB/s. 

‒ Data output to DAQ has been tested up to 12 GB/s. 

• Overall, from processing, network, and DDL perspectives, HLT can handle the maximum rate. 
 

• Other detectors are a different story: 

• With TPC readout of 500 Hz, other detectors might have few kHz. 

• Then, our bottleneck is the event merging of the many (small) events. 

• The problem is not the big TPC events. 
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Optimization steps 

• Event merger: 

• Use hash-based lists for fast indexing 

• No single bottleneck exists in the merger: 

• Much time used for spinlocks and gettimeofday (for nanosleep), many context switches. 

– Often no accurate time needed, some delays are accepted to avoid context switches. 
 

• One bottleneck were system calls to read / write for the named pipes. 

 Named pipes are now replaced by shared memory based communication. 
 

 

• We reduce the rate of PubSub messages to the merger, or merge messages (e.g. merge messages). 
 

 Merger (on its own) can now operate with up to 6 kHz with 12 Inputs (maximum due to 12 DDLs per FEP). 

– (12 inputs is the maximum we can have from our Read Out Receiver Card (C-RORC).) 

 

• Highest expected rate for 2016 Data Taking is 2 kHz central barrel + ~1-2 kHz from fast detectors. 
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Possible rates 

• Maximum event rates measured in data replay. 

 

• Selection test scenarios (all detectors in): 

• Single Publisher (ZDC) without Event Merger on FEP:  > 10 kHz. 

• pp (PbPb Reference run, Run 244364, TPC, ITS, EMCAL,  V0, ZDC): 4.5 kHz (Limit: CPU) 

• pp (13 TeV, 25 ns, Run 239401, TPC, ITS, EMCAL, C0, ZDC): 2.4 kHz (Limit: RCU2 bandwidth) 

• PbPb (Max Luminosity, Run 245683, TPC, ITS, EMCAL, V0, ZDC): 950 Hz  (Limit: RCU2 bandwidth) 

• PbPb (Run 245683, Without TPC, Only ITS, EMCAL, V0, ZDC): 6 kHz (Limit: Event merger) 

• PbPb (Run 245683, local TPC Reco only, no data transport):  2.5 kHz (Limit: CPU / GPU) 

 

• Before, the limit was 500 Hz instead of 950 Hz and 3 kHz instead of 6 kHz. 

 

• Real scenario with real event mix (not all detectors always in): 

• PbPb (Run 245683)     950 Hz TPC, 3.75 kHz Total 

• pp (Run 239401)     2.4 kHz TPC, 6 kHz Total 

 

• Since beginning of 2016, there has not been a single run that failed because HLT could not keep up the rate. 
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Configuration improvements 

• Run coordination asked us to improve the configuration to reduce ALICE startup time 

• Main driver: MakeConfig python script, takes up to 210 seconds. 

‒ Read config input: 30 down to 1.5 seconds. 

‒ Create process list: 160 down to 13 seconds. 

‒ Write output: 20 down to 2 seconds (through python-multiprocessing). 

 Total now: 16.7 seconds 
 

• Besides the MakeConfig script, other minor tasks have 

been improved, or hidden in the shadow of MakeConfig. 
 

• Total configure time improvement: 215 seconds down 

to 18 seconds. 

Analysis of startup times before improvements. 

HLT was in the shadow of detectors, 

which improved in the meantime. 
From Vasco Barroso, Run 2 2015 closeout workshop. 
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Engage and configure time 

• Another task was to reduce the engage time: 

• There was much less margin than for configure. Via software improvements, we could reduce the engage 

time from 32s to 22s. 
 

• We can move some steps from the engage step to the configure step. 

• This has a negative effect on the possible parallelization during startup. 

 Engage time goes down. 

 Configure time grows. 

 Total time goes up slightly (+1 second for creation and distribution of GRP object.) 

• Engage 22.5 secs to 16.5 secs. 

• Configure 15.5 secs to 22.5 secs. 

– (Different configure time than before due to slightly different setup.) 
 

• Both for configuration and for engage the HLT is now in the shadow of either DAQ or of multiple 

detectors. HLT never delays the start of a run. 
 

• Also: all race conditions and problems with ECS interface fixed ensuring constant startup time – no 

startup failures (except for obvious regions – wrong B-field) any more this year. 
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Total CPU load reduction: 

• Benchmark at high rate processing for maximum framework load 

 

• Rate:  3 kHz   6 kHz 

• Event Merger: 240%   200% 

• TaskManager: 100%   30% 

• RORCPublisher: 12 * 75%   12 * 30% 

• DataRelay: 80%   0% 

• EventScatterer: 80%   60% 

• Sum:  1200%   650% 

 

• This frees up plenty of CPU resources on the FEP. 

 

• Some individual components with very high compute load. 

• Mostly the TPC components. 
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Processing Time Overview 

• Black bars show system load in kernel space. 

 

• Framework has 

significant system load 

for data transport. 

 

• TPC has some system 

load for DMA transfer 

to GPU. 

 

• Overall, framework load 

is not dominant. 
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• Approach for asynchronous processing: 

Split processing in synchronous and asynchronous part. 

 Frameworks spawns an asynchronous thread. 

 It provides simple interface to 

the component for offloading 

asynchronous tasks. 

 It handles the synchronization. 

 

• Task runs in a different process 

 Resilient to segmentation faults. 

 Cannot affect normal operation. 
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New Zero-MQ based message transport 

• Some features were not feasible with the original HLT data transport: 

• HLT framework is a loop-free directed graph  no feedback loop. 

 

• New ZeroMQ transport as additional transport mechanism 

• Similar message based approach as in the HLT itself. 

• Works also as prototype implementation for O2. 

• Used in the HLT for online calibration feedback loop. 

• All new online QA components and the event display use this new approach. 

 

• Transparent inclusion in HLT configuration: 

• ZMQ sources / sinks take messages from HLT framework and forward via ZeroMQ. 
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Summary 

• HLT framework throughput improved: 

• Can cope with any data and event rate expected for run 2. 

• Can process TPC data at maximum link speed of 50 GB/s. 

• Event mergers with highest load of 12 links operate at up to 6 kHz. 

• Framework load reduced significantly, leaving more resources for reconstruction tasks. 
 

• HLT Startup time improved  never delays the start of run. 
 

• Main improvement step: 

• Improve inter-process communication via shared memory. 

• Redesign processing graph for better load-balancing. 

• Speed up python configuration scripts, use multi-processing in python. 
 

• New feature added: 

• Feedback loop and asynchronous processes enable online calibration. 

• ZeroMQ transport added for calibration and for online QA. 

• Asynchronous processes protected against fatal errors like segmentation violations. 


