

Realtime processing of LOFAR data for the detection of ns pulses from the Moon

p, v, X

Tobias Winchenfor the LOFAR Cosmic Ray Key Science Project

tobias.winchen@vub.ac.be

Search for Particles on ZeV* Scale

Tobias Winchen - Realtime processing of LOFAR data

2

* 1 ZeV = 10²¹ eV

The LOw Frequency ARray

The LOw Frequency ARray

A Fully Digital Radio Telescope

Conventional radio telescope:

Mechanically point (few) directional antennas into observing direction + combine signals

Observe only one direction at a time

Digital radio telescope:

Many omni-directional antennas digitally combine signals according to direction

Observe multiple directions simultaneously

Observation Strategy

- HBA Antennas have optimal frequency range
- Form multiple beams on the Moon
- Search for ns pulses in time-series
- Anti coincidence to suppress RFI
- Analyze Faraday rotation and dispersion to check lunar origin

Challenge:

LOFAR designed to integrate flux, user access only to processed signal

- Reconstruct ns time series from processed signal for trigger
- Use buffered traces for analysis

Online Data Analysis

Tobias Winchen - Realtime processing of LOFAR data

7

Step 1: Beamforming

- Digitally point antenna by time delay stacking of signal
- Efficiently done in frequency domain:

$$x_i^{\text{Beam}}(\omega_i) = \sum_k^{\text{Antennas}} x_i(\omega_i) e^{i\omega_i \Delta t_k}$$

Complex multiplication and summation of traces

 Signal from 24 stations with 8 FLOP / 8 byte:

~ 40 GFLOP / s / Beam

 Few computations per byte; here best done on CPU to reduce transfer costs

-360

-380

-400

Antenna Field

1e-8

3.2

2.4

1.6

Step 2: Inversion of Polyphase Filter

- Filter to decompose signal into subbands
- FFT signal is smeared out over neighboring frequencies
- Efficient filtering with PPF
 - + avoids frequency smearing
 - Reduces time resolution

from 5 ns to ~5 us

Inversion with small error possible:

– Inverse FFT
$$~{\cal F}^{-1}(ilde y)=y$$

- Solving sparse linear system $H\hat{x}=y$

every 250 ms with

 $x \sim 5\ 000\ 000\ elements$

O(100) GFLOP/s per iteration Tests ~ 25 iterations, => O(1000) GFLOP/s / beam

Step 3: Ionospheric Dedispersion

- EM Pulse from Moon pass through lonosphere
- Frequency dependent dispersion
- Dispersion depends on electron content of ionosphere (STEC)
- Dedispersion
 - Complex Multiplication and summation on Beam in Fourier Space + FFT
 - ~ 27 GFLOP/s / beam
- STEC not known exactly \rightarrow

Test as many STEC-Values as possible

Performance Prototype Pipeline

- Beamforming : CPU
- PPF Synthesis : GPU (160% Realtime)
- Dedispersion : GPU

Stations	DataChunk 1	DataChunk 2	DataChunk 3				
CPU		DataChunk 1 Beamforming	DataChunk 2 Beamforming	DataChunk 3 Beamforming			
GPU			DataChunk 1 PPF Synthesis		DD	Da PPI	taC = S
GPU				DataChunk 2 PPF Synthesis]

Time

DRAGNET Cluster

Designed for Pulsar searches with LOFAR

- (J. Hessels et al., Amsterdam)
- 23 worker nodes
 - 16 CPU cores (2x Xeon E5-2630v3 (2014))
 - 128 GiB ram
 - 4x TitanX GPU
 - 56 Gbit/s Infiniband connection to LOFAR
 - = 92 High-End GPUs + CPUs ; 0.5 PetaFLOP/s
- Estimate based on prototype implementation:
 - 2 beams per node,
 - Computing power allows 46 beams total:
 - → Full coverage of the Moon with .1 deg beams possible

LOFAR Network

2 Stage Beamforming

- Combine multiple stations into windows of `virtual antennas'
- Limit on spacing as every Stage-1 beam has to cover full moon
- Loss of 2 stations \rightarrow
 - ~ 8% reduction in sensitivity
- Inhomogeneous sensitivity
- 4 `Stage-1 beams'
- Real time access known to work for 7 beams, but here each beam has to I

but here each beam has to be distributed on all 23 nodes

Tobias Winchen - Realtime processing of LOFAR data

(Additional Hardware)

Analysis and Simulation Software

Data Container

DataChunk Holds trace on GPU and CPU (Lazy update)	DataState Time Dom Freq. Dom PPF Filtere	: ain ain ed	Bea	am nfig	Detector Layout
Modules for Processing Steps					
(Additional as input)	Beam Former	PPF Synthesis	PPF Analysis	Antenn	a
Pipeline from Modules - Simulation Pipeline - Online Analysis Pipeline - Offline Analysis Pipeline					
Technology Used: Modules: C++ / CUDA Pipeline: Python + Numpy Interface	Beam (Empty)	Bea Forn	m her S	PPF ynthesis	

PPF Filt.

Time Domain

+ Numpy Interface OpenMPI

16 Tobias Winchen - Realtime processing of LOFAR data

Conclusions

- Search Cosmic Particles on ZeV scale via Lunar-Askaryan-Effect with LOFAR (and SKA in future) to determine cosmic ray origin and test new physics scenarios
- Radio Telescopes are designed to integrate signal, not to analyze ns time traces
- Recovery of ns time resolution possible in realtime with DRAGNET GPU/CPU cluster
- Working prototype for Online + Simulation software (CUDA, MPI, Python Interface)
- Now: Simulation studies to determine and optimize sensitivity
- First run next year

Backup

Pulse Reflected at High Frequencies

- Radiation emitted in Cherenkov cone
- Cherenkov angle == Angle of total reflection
- Upgoing shower required / rely on surface roughness

19 Tobias Winchen - Realtime processing of LOFAR data

Pulse Escapes at Low Frequencies

- Cherenkov cone is broader at low frequencies
- Also downgoing showers detectable
- Optimum in 100 200 MHz range (Scholten et al. 2006)

Polyphase Filter

1. Matrix product Hx = y

. . . .

2. Fourier transformation

$$\mathcal{F}(y) = \tilde{y}$$

Inverse Polyphase Filter (PPF⁻¹)

$$\mathcal{F}^{-1}(\tilde{y}) = y$$

Direct inversion of FIR filter

$$H^{-1}y = \hat{x}$$

Inverse does not exists as H is not square

Approximate inverse

$$Gy \approx \hat{x} \qquad GH \approx I$$

Supposed to be numerically unstable / produces artifacts (spikes)

Robust approach: Solve linear system

$$H\hat{x} = y$$

using iterative least squares (LSMR)

$$\min_{\hat{x}} \|H\hat{x} - y\|$$

²² Tobias Winchen - Realtime processing of LOFAR data

Signal Filtering @ LOFAR

- Decompose signal into subbands
 Example signal 16 184 samples White noise Transmitter: 123.42 MHz Sampling freq. 200MHz
- FFT signal is smeared out over neighboring frequencies
- Efficient filtering with PPF
 - + avoids smearing
 - Reduces time resolution
 from 5 ns to ~5 us

Accuracy of PPF Inversion

Tobias Winchen - Realtime processing of LOFAR data

Dispersion

- Frequency dependent time delay of pulse due to free electrons in ionosphere
- Frequency dependent time delay

$$\Delta t(\nu) = 1.34 \frac{STEC}{\text{TECU}} \left(\frac{\nu}{\text{Hz}}\right)^{-2} \text{s}$$

STEC: Standard electr. content $1 \text{ TECU} = 10^{16} \text{ electrons / } m^2$

- Typical values 5 100 TECU
 - > 500~ns delay between 100 MHz and 200 MHz

Dedispersion

27

Recovery of 99% of amplitude possible PPF results in 30% fluctuations with small TEC values → Tobias Winchero Scan multiplesiteC values data

Sensitivity Optimization

Pulse Simulation

Bandwidth limited delta pulse

(30 deg rotated in phase)

 Start randomly* shifted by 0.5 – 5000 pico seconds (1/10000 of sampling intervall)

* respectively corrected for individual antenna positions

30 Tobias Winchen - Realtime processing of LOFAR data

Beamforming Single HBA station

Pulse from direction (-1,1,1)

Beamformed Pulse

■ PPFAnalysis → Beamformer → PPFSynthesis

Angular Resolution of Lunar Mode

- Limit observations to rim
- Possible Incident angles yield $\sim 5^{\circ}$ resolution
- Explicit reconstruction should do better