
Implementation of the ATLAS trigger
within the multi -threaded software

framework AthenaMT

B. Wynne
On behalf of the ATLAS Collaboration

11/10/16

2

Introduction

As the LHC luminosity increases to 3x its design value in 2021, and 7.5x in 2026,
the ATLAS High Level Trigger (HLT) will need to be upgraded to handle an input
event rate between 4x and 10x the current maximum of 100kHz

Given current trends in hardware, upgrading our HLT computer farm to cope with
this increased load will require multi-threaded software with efficient memory
sharing
 - At present we rely on a multi-process approach

The LHC collisions will also become more complex to reconstruct, with
increasing numbers of overlapping proton-proton collisions in a single event

This motivates us to use reconstruction techniques with more stringent
signal/background discrimination, typically found in offline algorithms

Please refer to Simon's talk this morning:
https://indico.cern.ch/event/505613/contributions/2227283/

Unify online and offline environments
Introduce multi-threading

https://indico.cern.ch/event/505613/contributions/2227283/

3

AthenaMT

The ATLAS experiment is developing a new software framework – AthenaMT – to
introduce multi-threading into the offline reconstruction and HLT workflows

Gaudi Athena→
GaudiHive AthenaMT→

AthenaMT targets intra-event parallelism, by executing individual algorithms in
available CPU threads. The same mechanism allows for inter-event parallelism

The crucial requirement is understanding the dependencies between algorithms,
to determine when they are safe to execute

Algorithms in event 1

Algorithms in event 2

4

AthenaMT

The ATLAS experiment is developing a new software framework – AthenaMT – to
introduce multi-threading into the offline reconstruction and HLT workflows

Gaudi Athena→
GaudiHive AthenaMT→

AthenaMT targets intra-event parallelism, by executing individual algorithms in
available CPU threads. The same mechanism allows for inter-event parallelism

The crucial requirement is understanding the dependencies between algorithms,
to determine when they are safe to execute

Dependency NB: A real ATLAS workflow tends to be far
more complex. The current HLT includes
~150 algorithms in ~2000 dependency chains

5

AthenaMT

The ATLAS experiment is developing a new software framework – AthenaMT – to
introduce multi-threading into the offline reconstruction and HLT workflows

Gaudi Athena→
GaudiHive AthenaMT→

AthenaMT targets intra-event parallelism, by executing individual algorithms in
available CPU threads. The same mechanism allows for inter-event parallelism

The crucial requirement is understanding the dependencies between algorithms,
to determine when they are safe to execute

Th
re

ad
 2

Th
re

ad
 1

Based on slide from G. Stewart

6

HLT framework comparison

Athena

Single-threaded

HLT-specific “steering” layer
 - Schedules algorithms
 - Makes trigger decisions

HLT-specific algorithm class for RoI-
based reconstruction

AthenaMT

Multi-threaded

Common scheduler for HLT and
offline algorithms

Common algorithm class for HLT and
offline
 - Facilitates code-sharing

Trigger decisions made by menu
algorithms

RoI data stored using EventViews
 - Can be accessed or manipulated by
any algorithm
 - HLT-specific information stored as
event data

7

Algorithm dependencies

When scheduling algorithms, AthenaMT makes the following assumptions

 1) If an algorithm is configured, it must be executed for each event
 (i.e. its dependencies are guaranteed to be satisfied at some point)
 2) An algorithm is only executed once per event
 3) Data dependencies are evaluated for a whole event

As a result, the same graph is executed for each event (ignoring details of thread
assignment)

8

AthenaMT and the trigger

The ATLAS trigger system is based on the concept of Regions of Interest (RoIs)

To reduce the readout bandwidth and CPU time requirements, HLT processing is
restricted to small windows in η-φ space identified as containing an
energetic/interesting particle

This runs contrary to many of the AthenaMT assumptions, which arose from an
offline perspective

1) Algorithms must not run if there is no appropriate RoI
2) Algorithms may be executed for multiple RoIs in a single event
3) Data objects are specific to an RoI

In Run 1 and Run 2, this behaviour was implemented using an HLT-specific layer
on top of the (offline) Athena framework

The goal for AthenaMT is to support both offline and HLT processing, to allow
sharing of algorithmic code

9

DataHandles and EventViews

All AthenaMT algorithms produce and consume data via smart pointers called
DataHandles

An algorithm declares DataHandles for each input and output data object,
specifying the data type and the name it is stored under

The scheduler then examines all DataHandles to determine the dependencies
between algorithms

During processing of an event, the framework will update each DataHandle to
point to the location in memory where each data object should be stored

Si
m

pl
if

ie
d

da
ta

de

pe
nd

en
cy

 c
ar

to
on

10

DataHandles and EventViews

All AthenaMT algorithms produce and consume data via smart pointers called
DataHandles

An algorithm declares DataHandles for each input and output data object,
specifying the data type and the name it is stored under

The scheduler then examines all DataHandles to determine the dependencies
between algorithms

During processing of an event, the framework will update each DataHandle to
point to the location in memory where each data object should be stored

Ev
en

t
St

or
e

DATA

DATA

ReadHandle
WriteHandle

ReadHandle

Im
pl

em
en

ta
ti

on
 u

si
ng

D

at
aH

an
d
le

s

11

DataHandles and EventViews

All AthenaMT algorithms produce and consume data via smart pointers called
DataHandles

An algorithm declares DataHandles for each input and output data object,
specifying the data type and the name it is stored under

The scheduler then examines all DataHandles to determine the dependencies
between algorithms

During processing of an event, the framework will update each DataHandle to
point to the location in memory where each data object should be stored

Ev
en

t
St

or
e

DATA

DATA

ReadHandle
WriteHandle

ReadHandle

Im
pl

em
en

ta
ti

on
 u

si
ng

D

at
aH

an
d
le

s

12

DataHandles and EventViews

All AthenaMT algorithms produce and consume data via smart pointers called
DataHandles

An algorithm declares DataHandles for each input and output data object,
specifying the data type and the name it is stored under

The scheduler then examines all DataHandles to determine the dependencies
between algorithms

During processing of an event, the framework will update each DataHandle to
point to the location in memory where each data object should be stored

E
ve

nt

S
to

re

DATA

DATA

ReadHandle

WriteHandle

ReadHandle

Im
pl

em
en

ta
ti

on
 u

si
ng

D

at
aH

an
d
le

s

13

DataHandles and EventViews

An offline algorithm (designed to run on a whole event) can be run unmodified in
an RoI created by the trigger, simply by having the framework modify the
DataHandles

We have implemented an EventView class that can be used interchangeably with
the whole event store. Each view is populated with data corresponding to a
single RoI, and then connected to an algorithm via the DataHandles

EventViews are treated like a standard data object, so can be created or
manipulated by any algorithm

Ev
en

t
Vi

ew

DATA

DATA

ReadHandle
WriteHandle

ReadHandle

14

EventViews

Each EventView implements the same interface as the whole event store, and
presents a subset of the data it contains

The views are intended to be general-purpose objects

 - They can contain data objects that describe a corresponding RoI
 - Allows for potential alternative use-cases

Vi
ew

 1

Vi
ew

 2

Ev
en

t
St

or
e

DATA

DATA

DATA

DATA

RoI info

DATA

RoI info

DATA

DATA

DATA

15

Trigger menu

In the HLT-specific layer of the old Athena framework, the scheduling of
algorithms and resulting event accept/reject decisions were made by the
“steering” class

The AthenaMT scheduler replaces steering, but does not take trigger decisions

A decision is made in three stages:
1) Feature EXtraction (FEX) algorithms reconstruct detector data
2) Hypothesis (HYPO) algorithms apply selection criteria
3) Passed/failed hypotheses compared to trigger “menu” to select events

The first two stages were handled by algorithms, the third by the steering itself

Tr
ig

ge
r

St
ee

ri
ng

ACCEPT

REJECT

FEX
e.g. Calorimeter

clustering

HYPO
e.g. Cluster
Et > 20 GeV

16

Trigger menu

In the HLT-specific layer of the old Athena framework, the scheduling of
algorithms and resulting event accept/reject decisions were made by the
“steering” class

The AthenaMT scheduler replaces steering, but does not take trigger decisions

A decision is made in three stages:
1) Feature EXtraction (FEX) algorithms reconstruct detector data
2) Hypothesis (HYPO) algorithms apply selection criteria
3) Passed/failed hypotheses compared to trigger “menu” to select events

The first two stages were handled by algorithms, the third by the steering itself

We now introduce menu algorithms, fully replacing the steering

A
th

en
aM

T
Sc

he
du

le
r ACCEPT

REJECT
M

en
uFEX

e.g. Calorimeter
clustering

HYPO
e.g. Cluster
Et > 20 GeV

17

Menu algorithms

To provide early rejection, menu decisions are taken in several stages, with FEX
and HYPO algorithms scheduled in between

FE
X

H
YP

O

M
en

u

D
et

ec
to

r
re

ad
ou

t

M
en

u

FE
X

H
YP

O

M
en

u

Ro
I

cr
ea

ti
on

18

Menu algorithms

RoI information is read in from the detector and used to create and populate
EventViews

The menu algorithms are responsible for assigning FEX and HYPO algorithms to
an appropriate view

FE
X

H
YP

O

M
en

u

D
et

ec
to

r
re

ad
ou

t

M
en

u

FE
X

H
YP

O

M
en

u

Ro
I

cr
ea

ti
on

19

Menu algorithms

If there is no appropriate RoI, or if a decision is taken to reject the event, then
FEX and HYPO algorithms are never scheduled

FEX and HYPO algorithms are configured never to run on a whole event, and are
skipped by the AthenaMT scheduler

FE
X

H
YP

O

M
en

u

D
et

ec
to

r
re

ad
ou

t

M
en

u

M
en

u

Ro
I

cr
ea

ti
on

20

Menu algorithms

The menu algorithms prompt the scheduling of FEX and HYPO algorithms,
allowing them to be run multiple times per event where there are multiple RoIs
to process

M
en

u

D
et

ec
to

r
re

ad
ou

t

M
en

u

FE
X

H
YP

O

M
en

u

Ro
I

cr
ea

ti
on

FE
X

H
YP

O

21

HLT framework comparison

Athena

Single-threaded

HLT-specific “steering” layer
 - Schedules algorithms
 - Makes trigger decisions

HLT-specific algorithm class for RoI-
based reconstruction

AthenaMT

Multi-threaded

Common scheduler for HLT and
offline algorithms

Common algorithm class for HLT and
offline
 - Facilitates code-sharing

Trigger decisions made by menu
algorithms

RoI data stored using EventViews
 - Can be accessed or manipulated by
any algorithm
 - HLT-specific information stored as
event data

22

Status and plans

All components of the AthenaMT HLT workflow described here have a working
prototype

Currently being combined in a demonstrator for the full workflow
 - Menu algorithm workflow exists with dummy algorithms
 - Migrating real algorithms to use DataHandles
 - Adding EventView manipulation to the menu algorithms

Aiming for a first implementation using a limited set of algorithms by the end of
this year

Will add algorithms to the menu as they are migrated over the following years,
with the plan to have a complete implementation ready for 2019

Currently the HLT uses
 ~150 algorithms (connected by ~2000 “chains” defining data flow and selection)
 ~400 tools (configurable sub-components of algorithms)
 ~100 services (globally accessible interfaces to I/O, configuration, etc.)

Some components will be simplified or replaced, but the rest must be migrated

23

BACKUP

24

Intel Thread Building Blocks

The GaudiHive/AthenaMT scheduler relies on assigning a unit of work – an
algorithm - to a CPU thread as it becomes free

Intel Thread Building Blocks (TBB) is the mechanism used to achieve this

When an algorithm's dependencies are satisfied, it is wrapped in a TBB task class
by the AthenaMT scheduler

The task is then assigned to a thread by the TBB scheduler

A
th

en
aM

T
 s

ch
ed

ul
er

Th
re

ad
 2

Th
re

ad
 1

T
BB

 s
ch

ed
ul

er
Algorithms with

dependencies satisfied

25

Intel Thread Building Blocks

The GaudiHive/AthenaMT scheduler relies on assigning a unit of work – an
algorithm - to a CPU thread as it becomes free

Intel Thread Building Blocks (TBB) is the mechanism used to achieve this

When an algorithm's dependencies are satisfied, it is wrapped in a TBB task class
by the AthenaMT scheduler

The task is then assigned to a thread by the TBB scheduler

A
th

en
aM

T
 s

ch
ed

ul
er

Th
re

ad
 2

Th
re

ad
 1

T
BB

 s
ch

ed
ul

er
Tasks scheduled
for execution

26

Intel Thread Building Blocks

The GaudiHive/AthenaMT scheduler relies on assigning a unit of work – an
algorithm - to a CPU thread as it becomes free

Intel Thread Building Blocks (TBB) is the mechanism used to achieve this

When an algorithm's dependencies are satisfied, it is wrapped in a TBB task class
by the AthenaMT scheduler

The task is then assigned to a thread by the TBB scheduler

A
th

en
aM

T
 s

ch
ed

ul
er

Th
re

ad
 2

Th
re

ad
 1

T
BB

 s
ch

ed
ul

er
Tasks assigned

to threads

27

Intel Thread Building Blocks

The GaudiHive/AthenaMT scheduler relies on assigning a unit of work – an
algorithm - to a CPU thread as it becomes free

Intel Thread Building Blocks (TBB) is the mechanism used to achieve this

When an algorithm's dependencies are satisfied, it is wrapped in a TBB task class
by the AthenaMT scheduler

The task is then assigned to a thread by the TBB scheduler

 - We don't use the mechanisms in TBB for resolving algorithm dependency
graphs, it's just used to assign tasks to threads

 - One important feature of TBB that we do use: tasks can create other tasks,
allowing for internal parallelism in our algorithms

28

Menu algorithms

Maybe say something about HypoTools versus many RoIs in Run1?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 27
	Slide 28

