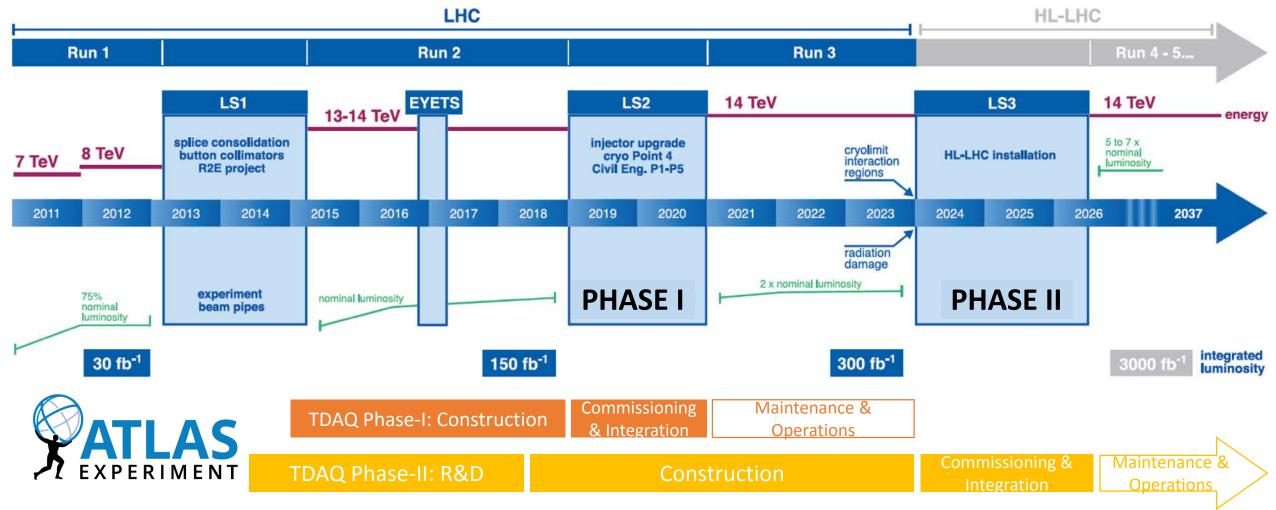
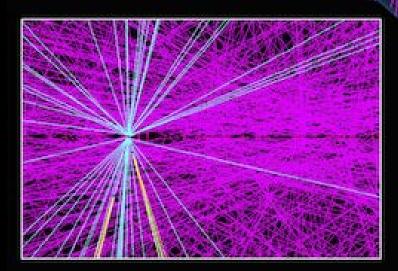
ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

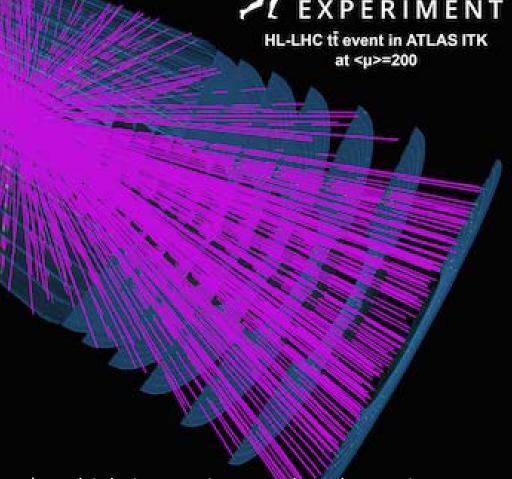
CHEP 2016, San Francisco (USA), 10-14 October 2016

Simon George

Royal Holloway, University of London On behalf of the ATLAS Collaboration

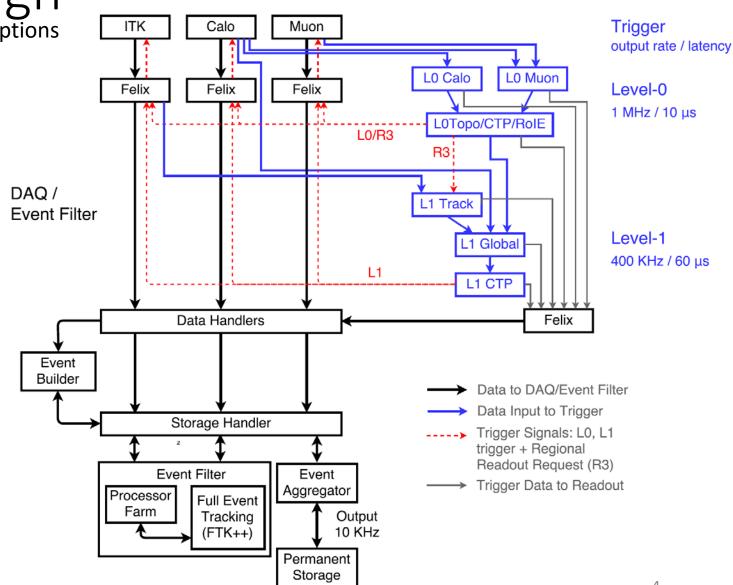



High Luminosity LHC



ATLAS upgrade for High Luminosity LHC

- Motivation: high luminosity ⇒ high pile up* increased radiation and readout bandwidth
- New Inner TracKer silicon strips and pixels
- New Trigger & Data AcQuisition system
- Upgraded calorimeter and muon detectors
- Upgraded computing and software



* Multiple interactions per bunch crossing

TDAQ System Design

Overview of one of the two design options

- Level-0 Muon & Calo used to make initial fast rejection and identify Regions of Interest
- Level-1 hardware track trigger and high resolution calo data provide further rejection
- DAQ comprises readout, regional requests, data handling and storage
- Storage Handler decouples Event Filter from DAQ so it can work continuously, between fills
- Event Filter combines commodity processor farm and hardware tracking

Trigger strategy for HL upgrade

- High rate of low threshold inclusive single lepton triggers to maximize electroweak physics. Higher thresholds would significantly limit physics potential.
- Lower rate triggers for multiple low- p_T leptons, taus, jets and missing transverse energy
- Robustness against pileup through early use of high granularity calorimeter information and hardware tracking
- Upgrades to improve muon efficiency
- Trigger as close as possible to offline selection, to improve efficiency and minimise systematics
- Note: Level-1 rates projected to HL far exceed 100 kHz limit of Run 3 system

Estimated rates and thresholds for architectures described on following pages

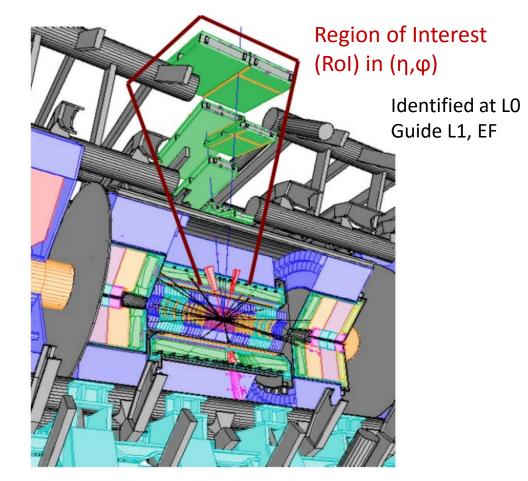
Item	Offline $p_{\rm T}$	Offline $ \eta $	LO	L1	EF
	Threshold		Rate	Rate	Rate
	[GeV]		[kHz]	[kHz]	[kHz]
isolated single e	22	< 2.5	200	40	2.20
forward e	35	2.4 - 4.0	40	8	0.23
single γ	120	< 2.4	66	33	0.27
single μ	20	< 2.4	40	40	2.20
$\operatorname{di-}\gamma$	25	< 2.4	8	4	0.18
di-e	15	< 2.5	90	10	0.08
di-μ	11	< 2.4	20	20	0.25
$e-\mu$	15	< 2.4	65	10	0.08
single $ au$	150	< 2.5	20	10	0.13
di-τ	40,30	< 2.5	200	30	0.08
single jet	180	< 3.2	60	30	0.60^{*}
large-R jet	375	< 3.2	35	20	0.35^{*}
four-jet	75	< 3.2	50	25	0.50^{*}
H_{T}	500	< 3.2	60	30	0.60^{*}
E_T^{miss}	200	< 4.9	50	25	0.50^{*}
$jet + E_T^{miss}$	140,125	< 4.9	60	30	0.30^{*}
forward jet**	180	3.2 - 4.9	30	15	0.30^{*}
Total			~1000	\sim 400	~10

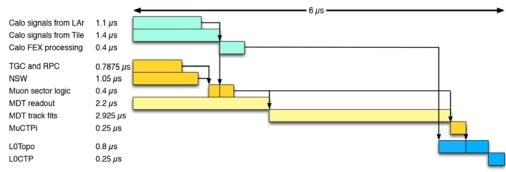
ATLAS Phase-II Upgrade Scoping Document CERN-LHCC-2015-020

Simon George CHEP 2016 5

Level-0 Trigger

L0 Calo

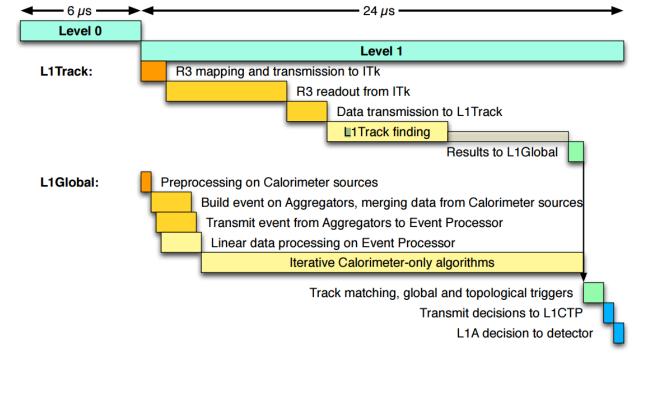

- Coarse calorimeter data sent to three feature extractors (em/tau, jet and global) to find different types of trigger objects (TOBs)
- Firmware upgrade; largely same hardware as Run 3

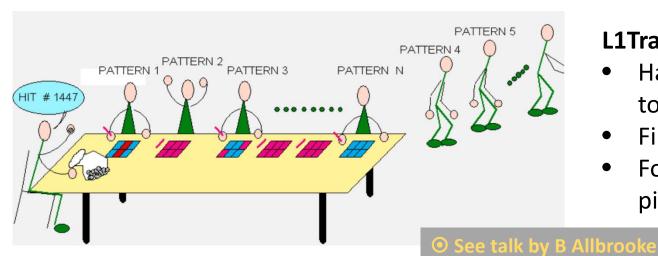

• L0 Muon:

- New readout and improved coverage to increase efficiency
- Latency now long enough to use precision MDTs for sharper turn on

"LOTopo/CTP/RolEngine"

- Receives trigger objects from L0 Calo and L0 Muon
- Performs complex trigger selections (invariant mass, missing transverse energy, etc.) and applies the LO trigger menu
- On LO Accept, the RolEngine calculates the Regional Readout Requests (R3) to send back to the detectors via FELIX
- Rols cover at most 10% of detector => 100 kHz equivalent rate for readout

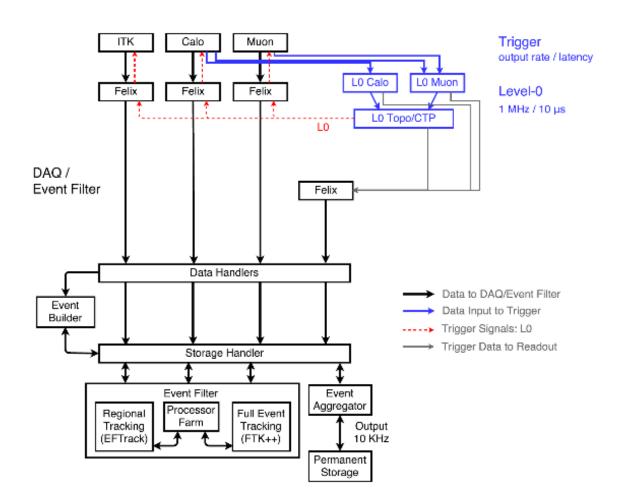




Level-1 Trigger

L1Global

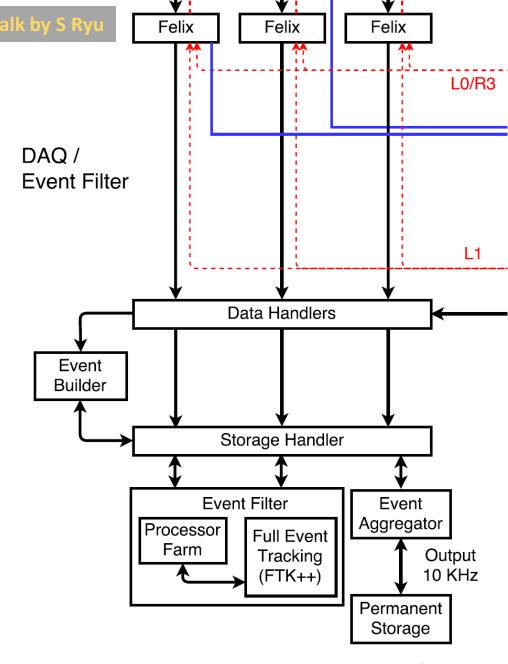
- Low latency aggregation network for calo data; time multiplexed event processing in FPGA/GPU
- Process finer-grained calo information using all cells to improve e, γ , τ , jets, E_T^{miss}
- Combine refined calo objects and L0 muons with tracks from L1Track
- Make topological combinations



L1Track:

- Hardware tracking using AM chips to match data to patterns
- Finds tracks with $p_T > 4$ GeV in Rols at 1 MHz
- For electron identification and to reduce the pileup background to multi-object events

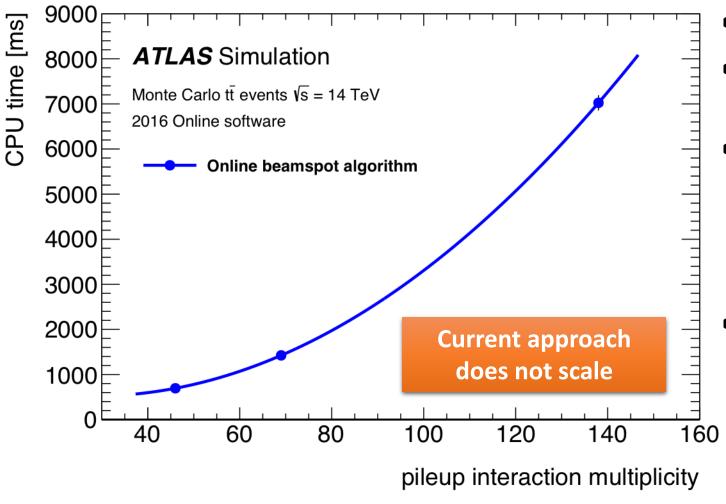
Level-0-only option



- L1 hardware trigger and Rol Engine relocated to EF hardware & software
 - Consequently no major EF CPU increase
- Readout less complex but less flexible
- DAQ scaled for 1 MHz readout from all detectors

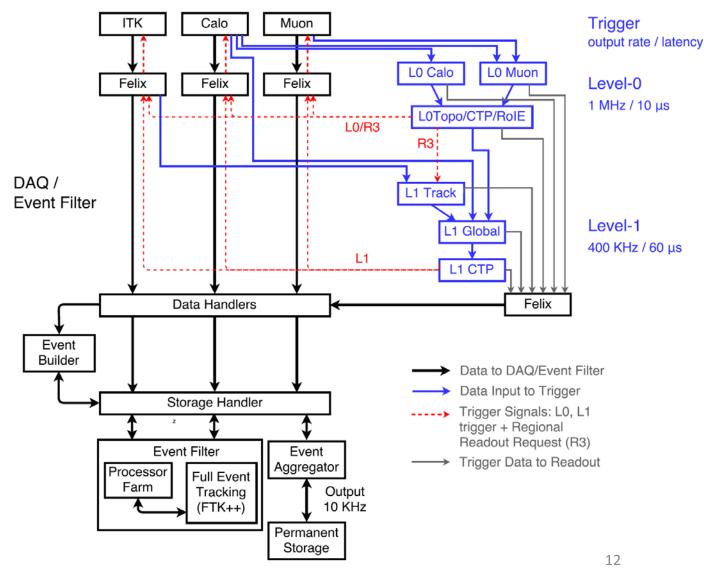
 Also looking at L0+L1 option in which lower latency is traded for higher L0 accept rate

Data Acquisition


- Trends from custom to commodity hardware, and hardware to software
- Front End Link eXchange (FELIX)
 - Routes between custom serial links and commodity multi-gigabit networks
 - Building on initial use in Phase-I
- Data Handler
 - Detector-specific data processing and monitoring.
 - Software toolkit and commodity computers replace custom hardware & firmware
- Event Builder
 - May be logical or physical
 - Data compression drives resources
- Storage Handler
 - Decouples Event Filter from DAQ so EF can work continuously, between fills
 - Requires storage volume of the order of 50 PB, able to concurrently receive and serve a few TB/s

High Level Trigger CPU and software evolution

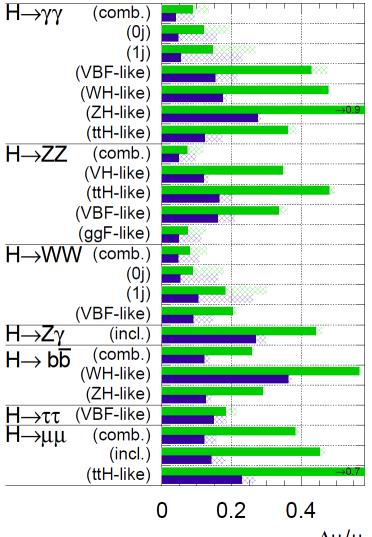
	LHC Run 1			LS1		LHC Run 2			LS2		Run 3			LS3			Run 4 HL			
2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Commo	ommodity CPUs ————————————————————————————————————					12-2	4 core	S	РНА	SE I	2	4+ cor	es	PHA	ASE II		Many (cores?	>	
		X5660					e.g. E5	5-2680	v3			Co-processors?						Hardware accelerators?		
Event p	Multiple independent processes					ıltiple _l th shar							d, ents in				Multi-t multipl events	le		
	Offline wrappe		thms				fline alg	gorithr	ns			_	iless ration (e algor					More the safety, parallelic optimiss	sm,	


Event Filter: tracking expected to dominate CPU time

- Software/hardware hybrid solution
- Software for seeded precision tracking in Rols
- Hardware for unseeded tracking
 - FTK++: AM chips, same board as L1Track
 - $p_T > 1$ GeV, for pileup suppression, b-tagging, E_T^{miss} , jet calibration, etc.
- Also studying
 - Hardware/software interplay
 - Software algorithms, parallelisation
 - Use of other hardware accelerators, e.g. GPUs

Summary & conclusions

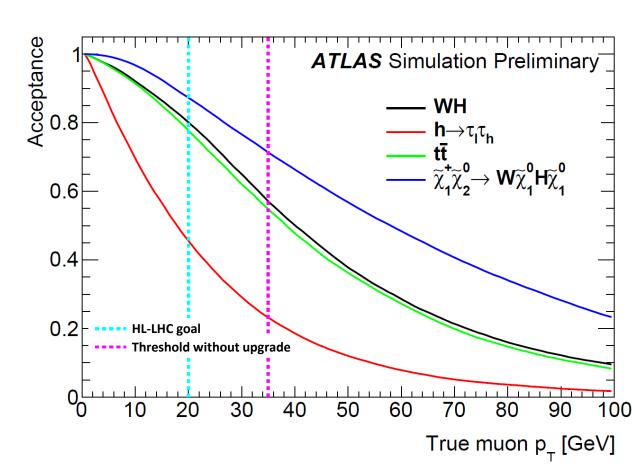
- ATLAS has a TDAQ design to meet the challenges of HL-LHC
- Two-level hardware trigger based on Regions of Interest, also a single level option.
- Hardware tracking in L1 and EF used to tackle high pileup
- Trend in DAQ from custom hardware to commodity hardware and software
- Baseline will be documented in a TDR, due around the end of 2017


Backup material

HL-LHC physics motivation

- Studies of the light Higgs boson require precision at electroweak scale
- Precision measurement of Higgs couplings are a window into new physics (including much higher mass scales than the LHC)
- Searches for physics Beyond the Standard Model (BSM) may require low cross section processes with large backgrounds, e.g. SUSY
- Subtle BSM physics can only be found if the SM is well understood
- European Strategy report (ECFA), P5 (DOE/NSF): HL-LHC needs at least 3000 fb⁻¹ (10 years at \mathcal{L} = 7.5 x 10³⁴ cm⁻²s⁻¹)

ATLAS Simulation Preliminary

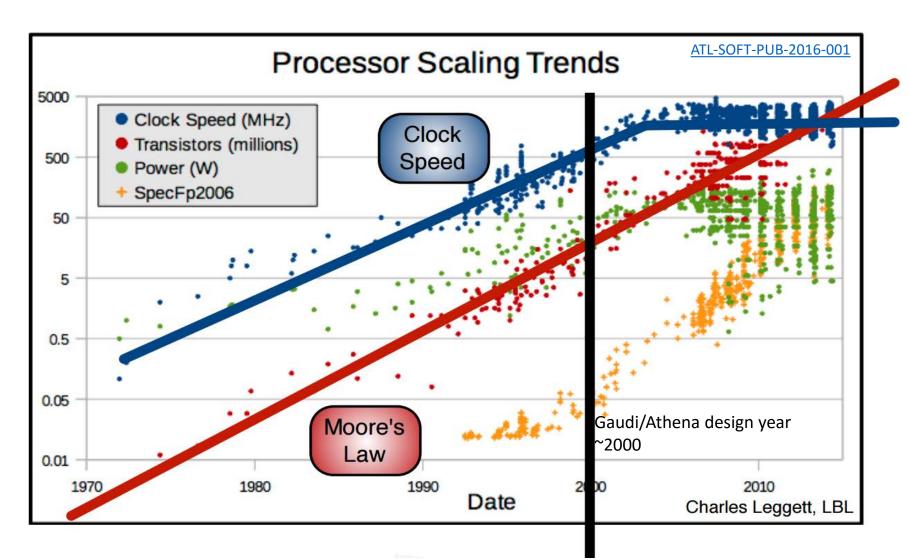

 \sqrt{s} = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

Motivation: Limitations of Run 3 TDAQ system at HL

		Run 3 I ovel-1 system no	orformance at			
		Run 3 Level-1 system performance at				
		$L = 7.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$				
	Run 1 Offline $p_{\rm T}$	Offline Threshold	Level-1 Rate			
Item	Threshold [GeV]	for Phase-II Goal [GeV]	[kHz]			
isolated Single <i>e</i>	25	22	200			
single μ	25	20	80			
$\mathrm{di} extstyle \gamma$	25	25	8			
di-e	17	15	90			
di-µ	12	11	10			
$e-\mu$	17,6	17,12	8			
single $ au$	100	150	20			
di-τ	40,30	40,30	200			
single jet	200	180	60			
four-jet	55	75	50			
E_T^{miss}	120	200	50			
$jet + E_T^{miss}$	150,120	140,125	60			

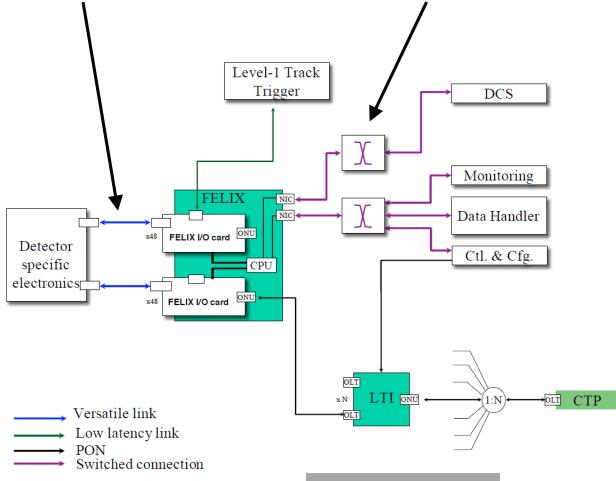
Level-1 rates projected to HL far exceed 100 kHz limit of Run 3 system.

Without upgrade, higher thresholds significantly curtail physics potential.

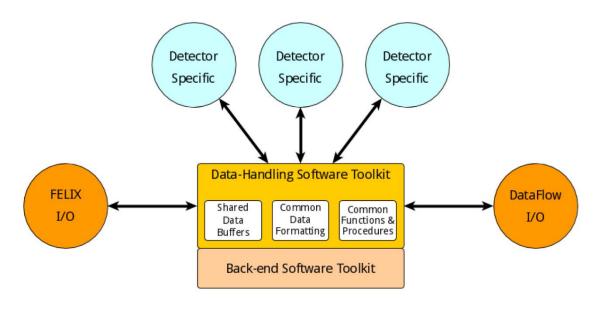

Upgrade motivation: computing evolution

Shift away from clock speed scaling to increasing numbers of cores and other parallel processing features

Commoditisation of coprocessors/accelerators


Evolution in programming paradigms, tools and libraries

Computing models and software must adapt


Read Out architecture

Front End Link eXchange (FELIX), routes between **custom** serial links and **commodity multi-gigabit networks**

Data Handler

For detector-specific data processing and monitoring. Software toolkit and commodity computers replace custom hardware & firmware

See talk by S Ryu