# Multi-Threaded Algorithms for GPGPUs in the ATLAS High Level Trigger





Patricia Conde Muíño on behalf of the ATLAS Collaboration



## ATLAS TDAQ System in Run 3

Higher luminosity  $\rightarrow$  larger pile-up  $\rightarrow$  larger volume of data  $\succ$ 

•

Advanced algorithms needed to provide the same rejection





## General Purpose GPUs for triggering

- > HLT farm size is limited, mainly by power and cooling
- > CPU time increases with pile-up

Dominated by combinatorial nature of the tracking algorithms

- > GPGPUs: provide massive parallelization potential
- ATLAS GPGPU prototype
- Evaluate the use of GPGPUs at trigger level
  - Figure of merit: processed events/s/cost
- > Algorithms:
  - Calorimeter, tracking, muon and jet reconstruction
- > Hardware: NVidia Tesla K80
  - 12 GB RAM

2496 CUDA Cores per chip

824 MHz GPU, 2505 MHz memory clock

P. Conde Muíño





### Trigger GPGPU demonstrator architecture

### Client-server architecture:



### Client:

- One HLT processing unit per core  $\succ$
- Athena offline & online framework  $\geq$ 
  - Provides data
  - Executes chains of algorithms
  - Provides monitoring services
  - Rejects/accepts the events

### Server:

- Independent from Athena
- Accelerator resource management  $\geq$ Serve many Athena processes Can exploit several technologies
- Pre-allocate memory for data
- Store global/constant data

P. Conde Muíño

## GPU Inner Detector algorithms





 GPGPU algorithm provides same efficiency and resolution as CPU one (very different GPU and CPU algorithms)



### Link to GPU trigger public plots

P. Conde Muíño



### GPGPU ID Algorithm Timing Performance

> Total algorithm execution time

Measured in tt-bar events (very busy) with 46 interactions/bunch crossing Reduced by a factor ~5

> Very small data transfer overhead





> TopoCluster reconstruction on CPU (~8% of total time)

Group cells in 3-dimensions according to their signal/noise ratio



Seed (S/N>4) Growing (S/N>2) Terminal (S/N>0) Not enough S/N Not evaluated

### > TAC: Topo-Automaton Clustering

Use a cellular automaton for the GPU (maximize parallelism)

Propagate tag on a grid of elements (cell pair)

Cells get the largest tag on each iteration





### **GPGPU** Calorimeter Clustering Performance



- Energy difference <5% for most clusters</p>
- Cluster growing time reduction factor:

| Sample  | Pile-up | Reduction factor |
|---------|---------|------------------|
| tt-bar  | 138     | 2                |
| tt-bar  | 46      | 2                |
| di-jets | 40      | 1.3              |

Potential larger gain with parallelization of next clustering steps (splitting)





## Muon reconstruction algorithms



- Uses Hough Transform (HT) to convert track finding to maxima finding
  - Straight HT is used for xy-plane, curved HT in rz-plane
- > GPU algorithm
  - filter hits and fill Hough-space matrices
  - Sort maxima above certain threshold
  - Associate hits in spectrometer
- 3D segments constructed by combining 2D segments in CPU



## Performance of the GPU Prototype



- Gain in throughput: 20-40% depending on number of processes running
- > 1 GPU can serve efficiently up to 14 processes
- Gains will increase when more code is offloaded (ex. Bytestream conversion, track following, cluster splitting, ...)

Jet reconstruction algorithms already implemented on GPU - performance measurements underway



- The LHC Upgrade will impose stringent requirements on the ATLAS trigger system
  - Need advanced algorithms, capable of higher rejection with same efficiency
- ATLAS is studying the use of GPGPUs for triggering
  Require re-implementation of the algorithms to maximize parallelization
- First evaluation of calorimeter and tracking reconstruction
  - Achieved the same physics performance in tracking & cluster reconstruction

Total execution time reduced by a maximum of

A factor of 5 for tracking

A factor of 2 for cluster formation

Lesson: data structures suitable for CPU & GPU would reduce overheads

Gain in number of processed events/s:

Between 20-40%, depending on number of processes accessing the GPU Larger gain expected when more code is offloaded to the GPU



## Acknowledgements



### > OE, FCT-Portugal, CERN/FIS-NUC/0005/2015







### **GPGPU** Calorimeter Clustering Performance





### **GPGPU** Calorimeter Clustering Timing



Cluster growing time reduction factor: Factor ~2 for tt events with 138 interactions/bunch crossing Reduction of 30% for di-jet events with 40 interactions/bunch crossing



#### CHEP16, San Francisco, 10-14 Oct 16

70









Inner Detector Track Seeding on GPU (Total 88ms)

P. Conde Muíño