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ATLAS TDAQ System in Run 3

Run 3

2.4 MB/25 ns

240 GB/s

29 GB/s

2.4 GB/s

➢ Higher luminosity → larger pile-up → larger volume of data 
➢ Advanced algorithms needed to provide the same rejection
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General Purpose GPUs for triggering

➢ HLT farm size is limited, mainly by power and cooling
➢ CPU time increases with pile-up

➢ Dominated by combinatorial nature of the tracking algorithms
➢ GPGPUs: provide massive parallelization potential
ATLAS GPGPU prototype
➢ Evaluate the use of GPGPUs at trigger level

➢ Figure of merit: processed events/s/cost
➢ Algorithms:

➢ Calorimeter, tracking, muon and jet
➢ reconstruction

➢ Hardware: NVidia Tesla K80
➢ 12 GB RAM
➢ 2496 CUDA Cores per chip
➢ 824 MHz GPU, 2505 MHz memory clock
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 Trigger GPGPU demonstrator architecture

Client:
➢ One HLT processing unit per core
➢ Athena offline & online framework

➢ Provides data 
➢ Executes chains of algorithms
➢ Provides monitoring services
➢ Rejects/accepts the events

Server:
➢ Independent from Athena
➢ Accelerator resource management

➢ Serve many Athena processes
➢ Can exploit several technologies

➢ Pre-allocate memory for data
➢ Store global/constant data

➢ Client-server architecture:
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GPU Inner Detector algorithms

➢ Spacepoints (SP) arranged in wedge-
shaped slices

➢ For each SP in middle layer
➢ Search for inner/outerSP in same and 

neighbouring slices
➢  Impose z-limits from beam spot

➢ GPU kernels
➢ Calculate all doublets with middle-SPs
➢ Store doublets in global SoA storage
➢ Form triplets 

➢ Apply kinematic and quality cuts

Spacepoints SP triplets Seeds Tracks510 910 410 310

Raw data      
Conversion   

Space point 
formation

Track
seeding

Track
Following

Clone 
removal

Processed on 
the GPU
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GPGPU ID Algorithm Performance 

➢ GPGPU algorithm provides same efficiency and resolution as CPU one
➢ (very different GPU and CPU algorithms)

Link to GPU trigger public plots

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults
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GPGPU ID Algorithm Timing Performance 

➢ Total algorithm execution time
➢ Measured in tt-bar events (very busy) with 46 interactions/bunch crossing
➢  Reduced by a factor ~5

➢ Very small data transfer overhead

Time per event 1.6 s Time per event 1.2 s

Inner Detector Track Seeding on GPUInner Detector Track Seeding on CPU

Athena 
72%

CPU track 
seeding 
27.7%

Athena 
72%

Athena 
92.4%

GPU track 
seeding 
7.6%

Triplet 
making
2.6%

Doublet 
making
1.7%

Counting
2.2%

Data 
conversion 
and transfer
0.6%
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GPGPU Calorimeter Clustering Algorithm

➢ TopoCluster reconstruction on CPU (~8% of total time)
➢ Group cells in 3-dimensions according to their signal/noise ratio

➢ TAC: Topo-Automaton Clustering
➢ Use a cellular automaton for the GPU (maximize parallelism)
➢ Propagate tag on a grid of elements (cell pair)

➢ Cells get the largest tag on each iteration
➢ Process all cells pairs until no tag changes

Seed (S/N>4)
Growing (S/N>2)

Terminal (S/N>0)
Not enough S/N
Not evaluated
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GPGPU Calorimeter Clustering Performance

➢

➢ Potential larger gain with parallelization of next clustering steps (splitting)

➢ Energy difference <5% for most clusters
➢ Cluster growing time reduction factor:

➢

Time per event 1.02 s Time per event 1.06 s

GPU 
clustering 
44 ms, 4.3%

Growing
1.8%

Tagging

IPC
0.7%

Data 
conversion
1.%

CPU 
clustering 
84 ms, 
8.2%

Calorimeter clustering on GPUCalorimeter clustering on CPU

Sample Pile-up Reduction factor

tt-bar 138  2

tt-bar 46  2

di-jets 40  1.3
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Muon reconstruction algorithms

➢ Uses Hough Transform (HT) to 
convert track finding to maxima 
finding

➢ Straight HT is used for xy-plane, 
curved HT in rz-plane

➢ GPU algorithm 
➢ filter hits and fill Hough-space 

matrices
➢ Sort maxima above certain 

threshold 
➢ Associate hits in spectrometer 

➢ 3D segments constructed by 
combining 2D segments in CPU
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Performance of the GPU Prototype

➢ CPU: Intel(R) 
Xeon(R) E5-2695 v3 
14-core

➢ GPU: NVidia K80
➢ Data sample: 

simulated tt events  
(46 collisions/bunch 
crossing)

➢ Gain in throughput: 20-40% depending on number of processes running 
➢ 1 GPU can serve efficiently up to 14 processes
➢ Gains will increase when more code is offloaded (ex. Bytestream 

conversion, track following, cluster splitting,  …)
➢ Jet reconstruction algorithms already implemented on GPU – 

performance measurements underway 
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Summary and conclusions

➢ The LHC Upgrade will impose stringent requirements on the ATLAS 
trigger system

➢ Need advanced algorithms, capable of higher rejection with same efficiency 
➢ ATLAS is studying the use of GPGPUs for triggering

➢ Require re-implementation of the algorithms to maximize parallelization
➢ First evaluation of calorimeter and tracking reconstruction 

➢ Achieved the same physics performance in tracking & cluster reconstruction
➢ Total execution time reduced by a maximum of

➢ A factor of 5 for tracking
➢ A factor of 2 for cluster formation

➢ Lesson: data structures suitable for CPU & GPU would reduce overheads
➢ Gain in number of processed events/s: 

➢ Between 20-40%, depending on number of processes accessing the GPU
➢ Larger gain expected when more code is offloaded to the GPU
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Backup
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GPGPU Calorimeter Clustering Performance

➢ Energy difference <5% for most 
clusters

➢ No significant effects on clusters E
T
 

or jet reconstruction

Number of jets/event

Clusters E
T
 spectrum:
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GPGPU Calorimeter Clustering Timing

➢ Cluster growing time reduction factor:
➢ Factor ~2 for tt events with 138 

interactions/bunch crossing
➢ Reduction of 30% for di-jet events with 40 

interactions/bunch crossing
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