
HEP Track Finding with the Micron
Automata Processor and Comparison with
an FPGA-based Solution!
Michael Wang, Gustavo Canelo, Christopher Green, Ted Liu, Ted
Zmuda (presented by John Freeman for the authors)!
Fermilab!
22nd International Conference on Computing in High Energy and
Nuclear Physics, San Francisco, California, October 10-14, 2016!

Introduction!
•  Outline of Talk!

–  Motivation for investigating the Micron Automata Processor (AP)!
–  What is the Automata Processor?!
–  Brief description of a proof-of-principle application to investigate the AP’s

feasibility in HEP track recognition!
–  Comparison with CPU, single and multi-threaded!
–  Comparison with Content-Addressable-Memory based FPGA implementation!

•  Motivation for Exploring the Micron AP!
–  Trend in HEP experiments, towards more complex event topologies and

higher particle densities, makes fundamental task of pattern recognition in
HEP more challenging!

–  Conventional CPU/GPU architectures becoming less effective as we enter
post-Moore’s law era.!

–  Need to find other off-the-shelf solutions based on novel architectures tuned
for high-speed search applications like those in the Internet search industry.!

–  Micron’s AP is a good candidate!

2! Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

What is the Micron Automata Processor?!

3!

One benefit of the lookup method above is that it in-
herently supports character classes. The bit-parallel execu-
tion model for an input string S is shown below.

1: 2C ¼ 2I

2: if 2F & 0" 1 6¼ 0 then
3: match the empty string
4: end if
5: for each input character ! in S do
6: 2T ¼ 2C & symbols½!$
7: if 2T 2F 6¼ 0 then
8: we have a match
9: end if
10: Set 2C ¼ 0; 8q 2 T; 2C ¼ 2C jfollow½q$
11: if 2C ¼ 0 then
12: stop processing S
13: end if
14: end for

Line 2 tests if the start state 20 is a member of the final
states 2F . We include this to provide a direct comparison
with the traditional NFA; however, we do not do this in
hardware since it has no practical value. Lines 6-9 can be
executed in (m/w) time, where w is the machine word size
implementing the execution model above. Navarro and
Raffinot [22] describe a method, using k tables, to im-
plement line 6 in (mk/w) time. The size of k, in Navarro’s
algorithm, depends on the space complexity of the equiv-
alent DFA, since each table must store Oð2mþ1=kÞ entries, in
the worst case. We have developed, to our knowledge, the
first practical method implementing the bit-parallel execu-

tion model described above for large m ¼ 48 k. The prac-
tical method used to achieve this is described in the next
section on the Architectural Design.

3 ARCHITECTURAL DESIGN

3.1 A Memory-Derived Architecture
The automata processor is based on an adaptation of memory
array architecture, exploiting the inherent bit-parallelism of
traditional SDRAM. Conventional SDRAM, organized into a
two-dimensional array of rows and columns, accesses a
memory cell for any read or write operation using both a row
address and a column address. The ‘‘row address’’, for the
automata processor, is the input symbol. The 8-bit input
symbol is decoded (8-to-256 decode) and then provided to
the memory array. In place of memory’s column address and
decode operation, the automata processor invokes automata
operations through its routing matrix structure. The memory
array portion of the architecture is illustrated in Fig. 1.

The architecture provides the ability to program inde-
pendent automata into a single silicon device. Each au-
tomaton and all automata routing matrix paths run in
parallel, operating on the same input symbol simulta-
neously. Memory arrays are distributed throughout the
silicon, providing O(1) lookup for a m ¼ 48 K bit memory
word. This first implementation, derived from Microns
DDR3 SDRAM memory array technology, has an 8-bit
DDR3 bus interface. It is capable of processing 8-bit input
symbols at 1 Gbps, per chip.

3.2 The Routing Matrix
The routing matrix controls the distribution of signals to
and from the automata elements, as programmed by the

Fig. 1. Memory array.

DLUGOSCH ET AL.: AN EFFICIENT AND SCALABLE SEMICONDUCTOR ARCHITECTURE FOR PARALLEL AUTOMATA PROCESSING 3

•  Hardware realization of a Non-deterministic Finite Automata (NFA)!
•  Interesting adaptation of conventional SDRAM architecture!

8-bit	input	
generates	the	
“row	address”	

Rou6ng	matrix	
Provides	the	
“column	address”	

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

From regular expressions to particle trajectories!

4!

s	 u	

r	

t	
a	

r	 a	

s	

y	

h	 i	

g	

s	

v	

t	

r	

s	 u	s	y	“	 ”	symbol A -

symbol B -

symbol C -

symbol D -

hit address 1

hit address 2

hit address 3

hit address 4

An	obvious	applica6on	of	the	Automata	
Processor	is	in	performing	high-speed	searches	
on	input	data	streams	for	regular	expression	
matching	or		finding	words	in	a	dic6onary.		

In	this	example,	the	input	string	“susy”	is	
matched	to	a	dic6onary	entry	in	exactly	4		
symbol	cycles	no	maEer	how	big	the	dic6onary.	

However,	the	symbols	need	not	be	
limited	to	characters	in	a	string.	
For	example,	they	could	be	replaced	
by	wire,	strip,	or	pixel	addresses	in	
a	HEP	tracking	detector.		

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Basic operating principle of an automata track finder!

5!

15,17,23,25,31,32,35,36,41,45

R	

{15}	 {25}	 {35}	 {45}	
L1	 L2	 L3	 L4	

The	idea	is	to	create	a	paEern	bank	containing	every	possible	track	paEern.		Each	paEern	is	represented	by	an	
Automata	network	like	the	one	showed	above	(with	latch	aEributes	enabled).		Detector	hits	are	fed	into	the	AP		
sequen6ally	by	layer	and	all	hit	combina6ons	with	matching	paEerns	in	the	bank	are	found.	

Addresses	of	detector	“hits”	read	out	by	layer:	

Layer 1 Layer 2 Layer 3 Layer 4

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Proof-of-principle application with “toy” CMS Detector!

6!

R-z R-Ø

Proof of principle application: Implement a hypothetical pixel detector based electron track
confirmation trigger on a “toy” CMS detector

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Simulated Events in Toy CMS pixel detector!

7! Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Single	Z→ee	event	 Z→ee	event	with	pileups	

Match	EM	cluster	to	pixel	tracks	in	ROI	Region-Of-Interest	readout	

Basic “automaton” for track finder requiring all 4 hits!

8!

Basic “automaton” for track finder requiring all 4 hits!

Energy	range	constraint	on	calorimeter	cluster	

EM	cluster	coordinate	(phi	or	eta	depending	on	view)	
STE	pairs	represen6ng	16-bit	hit	addresses	in	the	4	layers	

Latches	to	enable	appropriate	half	of	16-bit	STE	pair	on	odd	or	even	cycle	

Repor6ng	STE	

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Results for Electron identification and photon rejection!

9!

Pileup EM Clusters Track Match E↵. Rejection Purity

Inter. Total e � e � (%) Factor (%)

50 1242 837 405 837 9 100 45 99

80 1395 839 556 839 17 100 33 98

110 1515 844 671 844 26 100 26 97

140 1648 844 804 844 56 100 14 94

Table 2: This table summarizes the ability of the Automata Processor algorithm to identify

electrons and reject photons for each of the 4 simulated samples used in our study. The total

number of EM clusters and their breakdown into electrons and photons are shown in columns

2-4. Columns 5 and 6 show the number of electron clusters and photon clusters, respectively,

for which a matching track was found. The last three columns show the electron identification

e�ciency, photon rejection factor, and purity as defined in the text.

case of matches. A trigger accept is generated if matches are reported in both339

views on the same clock cycle.340

5.2. Results for Electron Identification and Photon Rejection341

All reconstructable EM clusters are required to have pT > 5 GeV and to342

originate from the beam axis. The total number of EM clusters satisfying these343

criteria for each of the 1000-event simulated samples overlaid with a di↵erent344

number of pileup interactions are shown in the second column of Table 2. A345

breakdown of these numbers into those originating from electrons and those346

from photons is shown in the third and fourth columns. The fifth column of347

the table shows the number of electron clusters for which a matching track was348

found. The same number for photons is shown in the sixth column.349

For this study, we define the electron identification e�ciency as ✏e = N

e
EMtrk/N

e
EM350

and the photon rejection factor as R� = N

�
EM/N

�
EMtrk. N

e
EM and N

�
EM are351

the number of reconstructable EM clusters originating from electrons and pho-352

tons (columns 3 and 4 of Table 2), respectively, which satisfy the requirements353

described at the beginning of this section. N

e
EMtrk and N

�
EMtrk are the corre-354

sponding numbers of EM clusters for which there is a matching track in the355

19

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Processing time on automata processor!

•  Additional step, in external logic, needed to find coincident matches in
both views. !

10!

Number of pileups
40 60 80 100 120 140

S
ym

b
o
l c

yc
le

s

150

200

250

300

350

400

450

Number of pileups
40 60 80 100 120 140

S
ym

b
o
l c

yc
le

s

150

200

250

300

350

400

450

 viewφR- R-z view

assuming 512-bit report vectors assuming 512-bit report vectors

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Processing time on x86 CPU!

11!

Number of pileups
40 60 80 100 120 140

C
PU

 c
yc

le
s

20

40

60

80

100

120

140

160

180

200

220

310×

CPU processing time
nomatch

all

matched

Single threaded

Number of pileups
40 60 80 100 120 140

C
PU

 c
yc

le
s

10

20

30

40

50

60

70

80
310×

CPU processing time
nomatch

all

matched

Multithreaded
using OpenMP

CPU	Cycles	vs	#	of	Pileups	

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Processing Time on Automata Processor vs x86 CPU!

•  Used the simulated sample with 140 pileups!
•  Micron Automata Processor at 133 MHz!

–  3.25 us + 0.37 us external processing time = 3.62 μs!
•  Intel i7, 5th generation at 3.3 GHz!

–  Single core: 32.1 μs!
–  OpenMP on 6 cores: 17.5 μs!

12! Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Comparison with CAM-based FPGA implementations!

•  We look at the FPGA-based PRM (Pattern Recognition Module)
developed at Fermilab as a demonstrator for the VIPRAM ASIC and for
optimizing its design (Ted Liu et al.)!

•  PRM firmware has been tested extensively and its behavior, down to
clock-cycles, is deterministic and well understood.!

•  Possible to get very good idea of its performance relative to Micron AP
without actually running it on the same data.!

•  With knowledge of its architecture and characteristics, we calculated the
number of PRM cycles it would take to match pixel tracks to EM clusters:!
–  on the same 1K event sample with 140PU used to test the Micron AP!
–  using same definition of ROI associated with each EM cluster to

provide same set of pixel hits as input!

13! Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

PRM Block Diagram!

14!

PRM Firmware%Block%Diagram

12May,%2016

Track%Fitting

Calculate	6ming	from	the	instant	the	first	pixel	hit	is	fed	into	the	
module	up	to	instant	the	last	“road	id”	is	output	from	AM	stage	

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

15!

Lyr	1	

Lyr	2	
Lyr	3	
Lyr	4	

Incoming	“local”	hits	

Local	to	“superstrip”	transla6on	

Road	Id’s	

4	cycles	

8	cycles	

End-of-Event	

=	#	of	hits	in	layer	with	most	#	of	hits	
+	4	cycles:	local	to	ssid	conversion	
+	8	cycles:	road	Id	genera6on	

Ncycles	

+	#	of	roads	found	

PRM Timing Calculation!

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Processing Time on FPGA-PRM!

•  Average # hits in ROI in layer with largest number of hits:
~37.7!

•  Average # “roads” found in ROI: ~5.66!
•  Total number of cycles: 37.7 + 4 + 8 + 5.66 = 55.4 cycles!
•  For 250MHz clock: 0.2 us!
•  > 10x faster than automata processor!

16! Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

Conclusion!
•  Overview of Micron AP described architecture & capabilities.!
•  Demonstrated feasibility in HEP track recognition with a proof-of-principle

application.!
•  Compared performance with commodity CPU and custom FPGA solution.!
•  Currently, AP bridges the gap between traditional CPU/GPUs and ASIC/FPGA

solutions for fast pattern recognition applications.!
•  Areas of improvement in current AP architecture that can make it more

competitive:!
–  Larger symbol sizes, > 8 bits!
–  Higher clock rates (> 133MHz)!
–  More STEs per chip (> 48K)!
–  More efficient readout architecture!

•  AP still in its infancy, improvements like those listed above in the next version will
further enhance its suitability for HEP pattern recognition.!

•  Some of the results shown in this presentation are described in detail in:!
!NIM A 832 (2016) 219-230.!

17! Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

18!

End

Oct. 10-14, 2016!Michael Wang | CHEP 2016 – Track Pattern Recognition with the Automata Processor!

