

NaNet: a configurable Network Interface Card for Trigger and DAQ systems

Andrea Biagioni INFN – Sezione di Roma On behalf of NaNet collaboration

Conference on Computing in High Energy and Nuclear Physics 10 -14 October 2016

NaNet Objectives

Design and implementation of a family of FPGA-based PCIe Network Interface Cards :

- Bridging the front-end electronics and the software trigger computing nodes.
- □ Supporting multiple link technologies and network protocols.
- □ Enabling a low and stable communication latency.
- □ Having a high bandwidth.
- Processing data streams from detectors on the fly (data compression/decompression and re-formatting, coalescing of event fragments, ...).
- Optimizing data transfers with GPU accelerators.

NaNet Modular Design

- I/O Interface
 - Multiple physical link technologies
 - Network protocols offloading
 - Application-specific processing on data stream
 - Router
 - Dynamically interconnects I/O and NI ports
- Network Interface
 - Manages packets TX/RX from and to CPU/GPU memory
 - Zero-Copy RDMA
 - GPU I/O accelerator
 - TLB for Virtual to Physical mem map
 - Microcontroller
- PCIe X8 Gen2/3 Core

CPU

SYSTEM

MEM

NaNet Design – GPUDirect RDMA

- Non-GPUDirect capable NIC data flow
- Intermediate buffering on CPU memory for I/O operations.

Andrea Biagioni et Al. Poster: *"Latest generation interconnect technologies in APEnet+ networking infrastructure"*

Generic NIC

GPU

GPU MEM

PCle

Chipset

- GPUDirect allows direct data exchange on the PCIe bus with no CPU involvement.
- No bounce buffers on host memory.
 - Zero copy I/O.

- Latency reduction for small messages.
- nVIDIA Fermi/Kepler/Maxwell

- Distinguish between pions and muons from 15 to 35 GeV (inefficiency < 1%)
- □ 2 spots of 1000 PMs each
- □ 2 read-out boards for each spot

- Measurement of the ultra-rare decay $K^+ \rightarrow \pi^+ v \overline{v}$ (BR~8×10⁻¹¹)
- □ Kaon decays in flight
- High intensity unsepareted hadron beam (6% Kaons)
- L0 Trigger: synchronous level must reduce rate from 10MHz to 1 Mhz
 - Latency: 1 ms

GPU-L0 TRIGGER

- □ 4 TEL62 (4x1GbE)
- 8×1Gb/s Readout
 - 4×1Gb/s trigger primitive
 - 4×1Gb/s GPU trigger
- □ Event Rate: 10 MHz
- L0 trigger rate: 1 MHz
- Max Latency: 1 ms

- Compare FPGA-based trigger with a GPU-based one
- More Selective trigger algorithms
 - Programmable
 - Upgradable
- Efficient match of circulat hit patterns

GPU-based L0 trigger for Ring reconstruction

NaNet-10

- □ Terasic DE5-NET (Altera Stratix V)
- □ PCIe x8 Gen3
- □ 4 SFP+ ports (10GbE)
- □ nVIDIA GPUDirect RDMA
- UDP offloading
- Real-time processing
 - Decompression, Event Merger

NaNet-10 @CERN

DATA FLOW & GPU PROCESSING

□ NIC data flow

- UDP manager
- Decompressor
- Event Merger
- NaNet Transmission Control Logic
- GPU memory write process
- Data Gathering
 - Completion: Data are ready
- □ GPU processing
 - Event Finder
 - Fitter

- □ GPU processing ≤ Data Gathering!!!
 - Otherwise loss of data

Why HW Merger?

- Merging the events coming from the RICH on GPU... NO WAY
 - it requires synchronization and serialization
 - computing kernel launched after merging
- □ Gathering latency: 200µs
- GPU Merger latency: 250µs (higher than gathering, data loss)
 - 800ns @event
- □ HW Merger Latency: 300ns @event

et	F		, S	EVENT FI					DEF	5 5 5 5 5 5 5 5 5		55			INF	
STR 3 MGP	MGP STR 2 MGP STR 1 MGP STR 0 MGP		STR 3 HIT STR 2 HIT		STR 1 HIT STR 0 HIT		PATTERN		TOTAL HIT		TIMES		ТАМР			
STREAM	1 1; HIT 1	STREAM	1; HIT 0	STREAM	0; HIT 5	STREAM	0; HIT 4	STREAM	0; HIT 3	STREAM	1 0; HIT 2	STREAM	1 0; HIT 1	STREAM	I O; HIT O	
STREAM	STREAM 2; HIT 0 STREAM 2; HIT 8		STREAM 1; HIT 8 STREAM 2; HIT 7		STREAM 1; HIT 7 STREAM 2; HIT 6		STREAM 1; HIT 6 STREAM 2; HIT 5		STREAM 1; HIT 5 STREAM 2; HIT 4		STREAM 1; HIT 4 STREAM 2; HIT 3		STREAM 1; HIT 3 STREAM 2; HIT 2		STREAM 1; HIT 2 STREAM 2; HIT 1	
STREAM																
STREAM 3; HIT 4		STREAM 3; HIT 3		STREAM 3; HIT 2		STREAM 3; HIT 1		STREAM 3; HIT 0		STREAM 2; HIT 11		STREAM 2; HIT 10		STREAM 2; HIT 9		
				PAD	DING					STREAM 3; HIT 7		STREAM 3; HIT 6		STREAM 3; HIT 5		
127120	119112	111104	10396	9588	8780	7972	7164	6356	5548	4740	3932	3124	2316	158	70	

- Events are arranged in CLOPs with new format more suitable for GPU's threads memory access Multi Merged Event GPU Packet (M²EGP).
- Problem: searching for events position inside a CLOP using 1 thread on GPU takes > 100us for hundreds of events
- Solution: it must be parallelized. We can use all the threads looking for a known bytes pattern at the begin of every event: it takes ~ 35µs for 1000 events in a buffer

EVENTFINDER-RXEVENT, nowarmup r6215 b373

Andrea Biagioni – CHEP 2016 – NaNet: a configurable Network Interface Card for Trigger and DAQ systems

12/10/2016

Histogram: pattern recognition algorithm

- XY plane divided into a grid
- An histogram is created with distances from these points and hits of the physics event
- Rings are identified looking at distance bins whose contents exceed a threshold value

2-step implementation 8x8 grid -> 64 threads x event 4x4 grid only around maximum

NA62 2016 RUN

- Testbed (experimental result)
 - Supermicro X9DRG-QF Intel C602 Patsburg
 - Intel Xeon E5-2602 2.0 GHz
 - 32 GB DDR3
 - nVIDIA K20c

TOTAL LATENCY: events merging stage (NaNet), DMA, ring-fitting on GPU

TOTAL LATENCY: events merging stage (NaNet), DMA, ring-fitting on GPU

- ~ 25% target beam intensity (9*10¹¹ Pps)
- 1/16 downscaling factor
 - 8 CLOP, 32kB each
 - Gathering time: 350µs

Conclusion

- □ NaNet-10 is ready
 - 10 GbE channel
 - Real-time processing: Decompressor and Merger stages
- □ Ring reconstruction on GPU
 - Histogram (< 1µs per event)
- Future Work
 - NaNet-10: 4x 10GbE channels, PCIe Gen3 x8
 - Future NaNet NIC: OpenCL Kernel, SoC, 40GbE
 - New multiring algorithm on GPU: Almagest (<0.5 μs per event)

□ NaNet Collaboration:

R. Ammendola^(a), A. Biagioni^(b), P. Cretaro^(b), S. Di Lorenzo^(c) O. Frezza^(b), G. Lamanna^(d), F. Lo Cicero^(b), A. Lonardo^(b), M. Martinelli^(b), P. S. Paolucci^(b), E. Pastorelli^(b), R. Piandani^(f), L. Pontisso^(d), D. Rossetti^(e), F. Simula^(b), M. Sozzi^(c), P. Valente^(b), P. Vicini^(b)

(a) INFN Sezione di Roma Tor Vergata
(b) INFN Sezione di Roma
(c) INFN Sezione di Pisa and CERN
(d) INFN LNF and CERN
(e) nVIDIA Corporation, USA