
John Freeman
CHEP 2016
10 October 2016

artdaq: DAQ Software Development Made Simple

The “art” in artdaq

•  “art” is an application developed in Fermilab’s Scientific Computing
Division which performs event-based processing for an experiment’s
offline analysis

•  This processing is done using pluggable modules; modules can perform
event filtering, analysis, reconstruction and output

•  A standard set of modules is available + experiments can write their own
•  The choice of modules is referred to as an art “workflow”, and is

communicated to art via a FHiCL (*.fcl) document (Fermilab Hierachical
Command Language – think JSON, or XML).

•  An example of running art at the command line:

John Freeman | CHEP 20162

art –s ExperimentsInputFile.root –c ExperimentSpecificWorkflow.fcl

For more, see art.fnal.gov

10/10/16

Motivation

•  art’s features would be very useful for online running as well – events
being produced in real time:

–  Filtering can reduce the data initially stored
–  Analysis allows for online monitoring
–  Modules could be written in common for offline and online
–  A DAQ could take advantage of existing modules

•  This is where artdaq comes in!

John Freeman | CHEP 20163 10/10/16

artdaq Is

•  A set of processes, which provide “hooks” for experiments to embed code
(primarily art modules + communication with upstream hardware)

•  Additionally, infrastructure for
–  State-machine DAQ transitions (“start”, “stop”, etc.)
–  Transport + assembly of data fragments
–  DAQ metrics reporting (event rate, etc.)

•  FHiCL-configurable, like art – very flexible
•  Supported for most major Linux variants
•  A simple “toy” artdaq-based DAQ system will be described on the next few

slides
–  Keep in mind when the system is described that a real-life system will have

more of each type of process
–  Also keep in mind that the processes can (and probably will) run on different

hosts

John Freeman | CHEP 20164 10/10/16

BoardReaders: Interface to the Hardware

•  BoardReaders call objects (here, ExperimentSpecificClass1 and 2) which implement the
artdaq::CommandableFragmentGenerator base class’s functions – start, getNext, stop

 reads data in according to the experiment’s protocol and returns it wrapped in
artdaq::Fragment objects (data stamped with a fragment ID and sequence ID)

John Freeman | CHEP 20165

Continuously call
 while

running

TPC DATA

PMT DATA

10/10/16

Continuously call
 while

running

EventBuilders: Assembly and Filtering/Compression

•  “Round Robin” fragment sending:
–  Each BoardReader sends fragments with a fixed fragment ID, all sequence IDs
–  Each EventBuilder is in charge of assembling all fragment IDs for 1/N sequence IDs

John Freeman | CHEP 20166 10/10/16

EventBuilder process #2
-Assemble fragments with odd numbered
sequence IDs into events
- Filter/compress events in embedded art workflow

EventBuilder process #1
-Assemble fragments with even numbered
sequence IDs into events
- Filter/compress events in embedded art workflow

Diskwriting

•  Events are saved in art-readable *.root
files

•  The FHiCL documents used to configure
the artdaq processes (and hence the
DAQ) can also be saved in the *.root
files

John Freeman | CHEP 20167

Data Logger process
-Non-blocking event sends to Dispatcher
process downstream (next slide)
-Writes all events to storage

10/10/16

Online Physics Monitoring

•  artdaq provides a plugin whereby standalone art
processes can read events passing through the
system

•  Can configure fraction of events sent to a process,
or even apply experiment-specific cuts!

John Freeman | CHEP 20168

Dispatcher process
-Separate transport lines to
each online monitoring art
process
-Allows data logger to focus
only on writing to storage

Data Logger process

art process
-Run
ExperimentModule2
on every Nth event

art process
-Run
ExperimentModule1
on every event

1/N

10/10/16

Online Physics Monitoring

•  artdaq provides a plugin whereby standalone art
processes can read events passing through the
system

•  Can configure fraction of events sent to a process,
or even apply experiment-specific cuts!

John Freeman | CHEP 20169

Dispatcher process
-Separate transport lines to
each online monitoring art
process
-Allows data logger to focus
only on writing to storage

Data Logger process

art process
-Run
ExperimentModule2
on every Nth event

art process
-Run
ExperimentModule1
on every event

1/N

10/10/16

DAQ Monitoring and More
•  artdaq provides the

MessageViewer app, which
prints messages from both
artdaq and experiment-specific
code with severity level
indicated by color

•  Plugins are provided so that the
metrics reported by artdaq
processes can be displayed in
different formats (Ganglia,
Graphite, etc. – FHiCL
configurable)

•  TRACE debugging

John Freeman | CHEP 201610 10/10/16

Experiments Which Use artdaq

Experiment Peak
Incoming
Data Rate
(GB/s)

BoardReaders # EventBuilders EventBuilder
data reduction
factor

DUNE 35ton 0.1 24 16 1

Darkside-50 0.5 12 16 ~5

LArIAT 0.3 1 1 1

Mu2e 33 36 ~500 ~100

protoDUNE-SP 3 ~80 10-20 1

SBND 0.4 ~20 10-20 1

ICARUS 0.4 ~20 10-20 1

10/10/16 John Freeman | CHEP 201611

Mu2e Planned Layout

10/10/16 John Freeman | CHEP 201612

Upcoming Developments
•  Convenience and choice
•  Ability to configure FHiCL parameters

via a GUI rather than through editing
ASCII files

–  Can save/retrieve parameters in DB
•  Run control / process management

–  Experiments won’t need to develop
software to control when artdaq
processes are created, destroyed,
and sent state transitions

•  Data transport flexibility via plugins
–  Current data transport done via MPI
–  We’d like the transport layer to be

something you could choose
John Freeman | CHEP 201613 10/10/16

otsdaq

10/10/16 John Freeman | CHEP 201614

Web GUI

•  artdaq-based DAQ toolkit
•  Goal is to provide “off-the-

shelf” DAQ components
•  Designed for small lead-

time experiments – get a
DAQ up and running in a
matter of hours

•  Provides Run Control GUI,
firmware for supported
boards and configuration
management system

http://otsdaq.fnal.gov/beta

Conclusions
•  Developed by Fermilab’s RSI (Real-Time Software Infrastructure) group,

artdaq is used by many experiments
•  Designed to provide online users the benefits of the art package, it also

provides numerous useful features which experimenters won’t need to
build from the ground up

•  artdaq was created to make experimenter’s lives easier, and is constantly
being improved with that goal in mind- reusability and flexibility

•  To learn how to begin running a simple artdaq-based system within
minutes, go to https://cdcvs.fnal.gov/redmine/projects/artdaq-demo/wiki

–  Works on most major Linux distributions (Scientific Linux, Ubuntu 14, …)
–  Can also run it out of VirtualBox, using this file: https://goo.gl/OoU6vJ

John Freeman | CHEP 201615 10/10/16

