CHEP2016 - October 13 - San Francisco

An "artificial retina" processor for track reconstruction at the LHC crossing rate

Simone Stracka Universita` and INFN Pisa

F. Bedeschi^{*}, R. Cenci^{*}, P. Marino^{*}, M. J. Morello^{*}, D. Ninci^{*}, A. Piucci^{*}, G. Punzi^{*}, L. Ristori[§], F. Spinella^{*}, S. Stracka^{*}, D. Tonelli[¶], and J. Walsh^{*}

* Universita`, INFN, Scuola Normale Superiore Pisa [§] Fermi National Accelerator Laboratory [¶] INFN Trieste

Artificial retina algorithm

Inspired to early vision [1] and based on:

- Voting scheme for patterns
- Template matching

Features:

- **Analog response** + interpolation reduce number of neurons/patterns
- **Resource optimization**: select stored patterns to maximize information [2]
- Local connectivity: exploit spatially local correlations to increase scalability
- Parallelism: suitable for FPGA implementation

[1] Ristori L, NIM A453, 425 (2000)[2] Del Viva MM et al, PLoS ONE 8(7): e69154 (2013)

The track reconstruction algorithm

- The space of relevant 1. template patterns / tracks is encoded into the device
- Template-space cells are 2. routed only to the relevant detector elements
- An **analog voting scheme** is 3. executed in **parallel** for each cell in processing engines
- Tracks are identified as **local** 4. **maxima**, using interpolation for increased precision

Center of receptive field corresponds to center of phase space cell

Simone Stracka - CHEP 2016 - October 13 - San Francisco 3

Motivation

Computing and storage demands of future (HL-)LHC experiments represent a challenge: need a more efficient and scalable usage of available hardware

- More processing will have to be performed only once ("online")
- Performing a repetitive task on FPGA frees CPU resources for higher-level tasks
- FPGAs allow for low latency (sub-μs): acts as a "track-detector". The event primitives are immediately available to Event-Building and High-Level-Trigger farms

Abba ę аl., JINST 10 (2015) 03, C03008

High level simulation (1)

The retina track reconstruction was simulated for two case studies:

 3D track reconstruction using the LHCb vertex locator + 2 tracking stations in the fringe field of the magnet

With a system of 50000 cells (50 Stratix V FPGA), one could achieve O(100) MHz retina tracks / FPGA at a **reasonable cost**

High level simulation (2)

 Reconstruction of 2D track segments in a small 6-layer silicon strip telescope, located after a bending magnet

Curvature can be measured with O(%) precision with 3000 cells

Smaller-sized system for functionality tests using existing FPGA boards

2D tracking case study

Prompt tracks from collision (•) (10 per event) Tracks originating elsewhere (•)

6 layers: 53 x 22 cm², 200 μ*m* pitch 140 hits/event on average (<250 @90%)

7 independent readout modules/layer Two nearby layers constitute a **doublet**

Implementation

Paired configuration of TEL 62 boards (Stratix III, 65nm, used by NA62) Hit sequences pre-loaded in embedded RAM blocks (x16) and injected in the switch - all input hit sequences terminated by an End-Event

Pipelined hit processing

Intersections of templates with detector layers stored in look-up tables: **easy to update**

Upon end-event, sum doublets' weights that are above threshold (THR_DB), and reset accumulators

Engines include the logic to check for local maxima: if sum is above threshold (THR_S), compare value with first neighbors

Each FPGA can host 16x15 cells, using 90% of the resources

Simulation of the device

The latency is ~120 clock cycles (< 1 μ s), from ModelSim simulation

Simulated switching network, fed with realistic events (up to 250 hits/event), delivers < 90 hits (@ 90%) to any engine

Fully pipelined \rightarrow One hit/clock cycle \rightarrow ~1.8 MHz event-processing rate

Results of functionality test

Test with simple events (6 hits per track, without noise hits)

Pair of boards running continuously at nominal clock speed (160 MHz)

Events processed at the same rate (sustained) as a DAQ system built on the same hardware

11

2.5

2

1.5

1

0.5

0

Conclusions

Work in progress:

- test at 40 MHz event input rate (w/ commercial boards with bigger / faster FPGAs)
- test of lateral communication among modules: full mesh switching network (FPGA + optical fibers)

Summary:

- ✓ Developed **firmware** for existing boards
- ✓ Prototype unit (¼ of modular system) designed, simulated and **run at nominal clock speed**
- ✓ **Competitive track rates** w.r.t. existing methods
- ✓ **Cost effective** scaling to larger area detector

Implementation

A standard readout board used in the NA62 experiment is the building block of our test setup

Stratix III FPGAs (2006, 65 nm): 4 data processing chips (PP) + 1 master chip (SL)

Main clock: 40 MHz Data processing/transfer: 160 MHz

10 Gb/s links 2.5 Gb/s links 5 Gb/s links 1.6 Gb/s links

Switch board

We rely on master FPGA to implement interconnection among non-adjacent FPGAs → full mesh

Engines in the same chip receive the same hit sequence

Switch implementation

Pipelined to increase throughput, and modular Latency proportional to log₂[max(#inputs,#outputs)]

Splitter (2s): Latch, **LUT** (always copy EE), control FSM Merger (2m): Latches (x2), MUX, control FSM EE hits, after being received on both inputs, are copied to output

16

Engine board

Engines include the logic to check for local maxima → Lots of interconnections, limiting number of engines

Each PP FPGA can fit an array of 16x15 engines (cells), using 90% of the FPGA resources \rightarrow can fit 3000 engines in 4 TEL 62 boards

The master (SL) chip collects maxima from all the processing chip and it sends them out through the Ethernet connectors

Logic Analyzer output for engines

Sequences of hits from 100 single-track events are loaded into engines and processed at the nominal TEL 62 speed (160 MHz)

 \checkmark Fully pipelined \rightarrow one hit per clock cycle

Bottleneck is the switch: maximum hit input rate = 10 MHz / line

