CERN Computing in Commercial Clouds

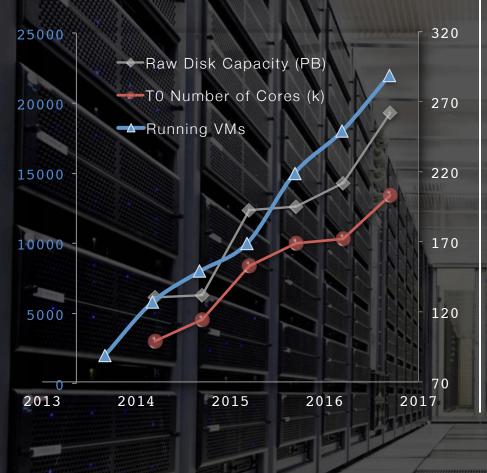
C. Cordeiro, on behalf of the CERN IT Cloud Integration Team

22nd International Conference on Computing in High Energy Physics October 2016

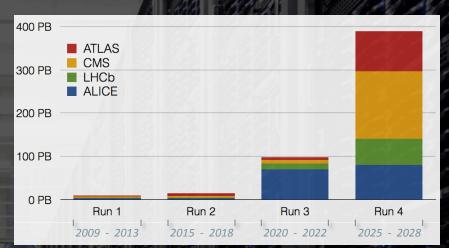
2:43 AM - 6 Aug 2014

2+ Follow

#Didyouknow? The Data Centre processes about 1 petabyte of data per day $\rightarrow = \sim 210,000$ DVDs. bit.ly/CDUK02

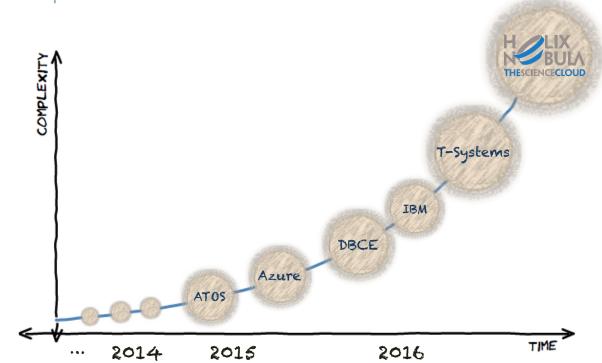

Intensity rises in the LHC: more protons, more collisions and more data #RestartLHC #13TeV cern.ch/go/j9mp

COMPUTING HISTORY

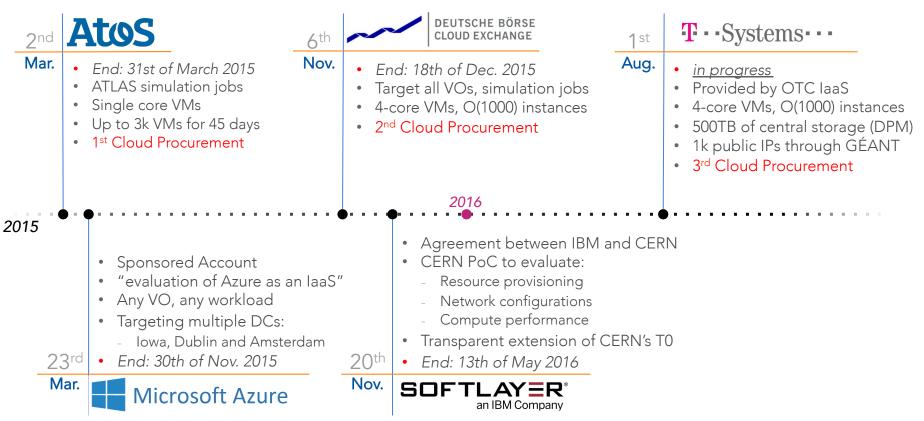


COMPUTING HISTORY

FUTURE CHALLENGE



Moore helps, but need more

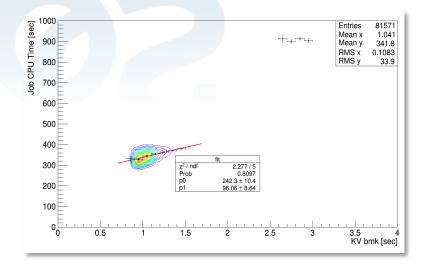

Integrating Clouds into the WLCG

complexity roadmap

...since 2015@CERN

3000 running VMs (CentOS 6) for 5 weeks = ~1.2M CPUh of processing

~11.5M ATLAS GEANT4 simulation events processed ⇔ ~160k files produced

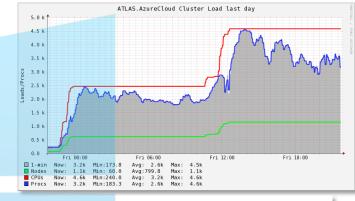

~97%

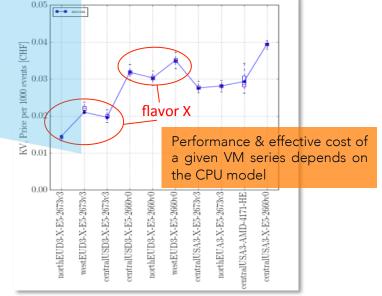
job wall clock spent on successful runs

30k CPU benchmarks (KV) ran, collected and correlated with job CPU time

Custom resource manager with workload based auto-scaling and interface with SlipStream

Ganglia based resource monitoring and accounting




- VOs included: LHCb, ATLAS and CMS, running several job types
- different DCs targeted simultaneously
- ~4800 vCPUs reached
- >240k benchmarks collected and analyzed in a Performance vs Effective Cost study

Adoption of CernVM and Squid caches

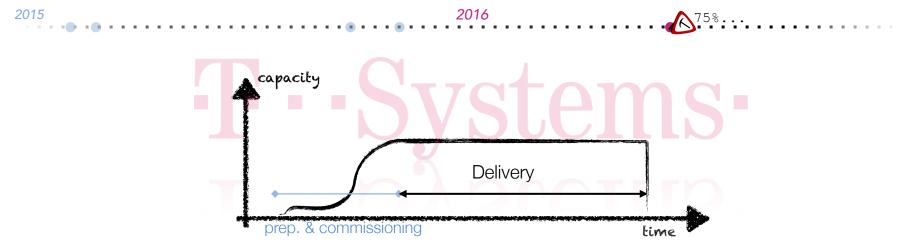
+


Template based provisioner wrapping the Azure Resource Manager CLI

different cloud providers through DBCE 5 corehours marketplace, shared amongst 4 VOs 50% full capacity provided and used ~1.5M aggregated corehours of processing job efficiency difference vs ALICE jobs <5% running at CERN 84% walltime spent on successful ATLAS jobs 87% of the CMS jobs finished successfully years of CPU time spent on successful ~24 LHCb full chain processing workloads Provisioning through VCycle and continuous CPU benchmarks to validate and compare the

presumed and perceived performance

- Terraform for provisioning
 - For virtual resources only
- Setup Puppet on contextualization
 - Additional facts for external hosts
- Job management through HTCondor
- Adoption of SLC
- Hosts under *softlayer.cern.ch* domain
- Monitoring and alerts delivered through Lemon
- ATLAS simulation workloads to validate the infrastructure


- Evaluate basic performance
- Evaluate VPN adoption
 - ~2x higher throughput w/o VPN

2016

- Tested using perfSONAR in bare metal box with 10Gbps NIC
- Comparable to regular Tier 1

PERFORMANCE

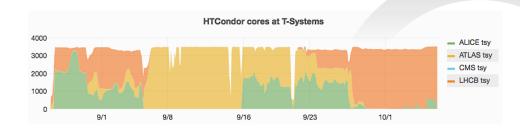
- HEP-SPEC06 on bare metal
 - Comparable with same HW at CERN, within 1σ
- Synthetic benchmarks on VMs and bare metal

Network reserved peak at least 10Gb/s

Bandwidth of at least 1 Gb/s among VMs

>800 IOPS **&** >50 MB/s streaming r/w, per VM

>15000 IOPS **&** >125 MB/s streaming r/w, per data disk


Pass the benchmark reference

881 puppetized workernodes

- 4 cores, 8GB RAM, 100GB disk
- Public IP through GÉANT
- Scientific Linux CERN 6.8
- Lemon monitoring
- Terraform provisioning

Job management - **HTC**ondor

- Transparent job submission
- Same HTCondor batch instance as T0
- Avg CPU efficiency ≅ **80%**

R T 2 DPMs with 480TB

2016

3,765 cores (total)

HORKLOADS

FR

ES

1 for ATLAS and CMS, **1** for ALICE Total of **50** VMs - 48 disknodes

- 2 filesystems of 5TB per disknode

Data Analytics from Monitoring

Over **35M** monitoring events processed

Top 10 message.condition \$ Q	Count \$
high cpu_idle	8271041
disk usage growing too fast	7975263
high memory swap usage	7956145
high cpu io wait	7183900

66

The Helix Nebula – the Science Cloud is a \in 5.3 million Pre-Commercial Procurement (PCP) tender for the establishment of a European hybrid cloud platform to support the deployment of high-performance computing and big-data capabilities for scientific research.

- A collaborative commitment of:
 - procurement funds
 - manpower
 - use-cases
 - in-house IT resources

http://www.hnscicloud.eu/past-events

https://indico.cern.ch/event/505613/contributions/2230727/

Public Clouds

CPU intensive workloads in public clouds have been successfully tested and understood

Cloud Integration

integrating cloud resources with the experiments frameworks is crucial for the coming challenges

data intensive workloads need yet further understanding

HNSciCloud

commercial cloud providers are expected to play an increasing role in the computing models of scientific research infrastructures

References

- "HL-LHC Computing", M.Krzewicki, Aix-Les-Bains HL-LHC Workshop
- "Accessing commercial cloud resources within the European Helix Nebula cloud marketplace", G. Domenico et al, 2015 *Journal of Physics: Conference Series* 664 022019
- "CERN-IT evaluation of Microsoft Azure cloud IaaS", Giordano D., Cordeiro C., Di Girolamo A., Field L., Riahi H., Schovancova J., Valassi A., Villazon L. (2016, March 29). Zenodo. <u>http://doi.org/10.5281/zenodo.48495</u>
- "Benchmarking cloud resources", D. Giordano et al, *CHEP 2016 ID:28*, <u>https://indico.cern.ch/event/505613/contributions/2227960/</u>
- "Real-time complex event processing for cloud resources", C. Cordeiro et al, *CHEP 2016 ID:27*, <u>https://indico.cern.ch/event/505613/contributions/2230885/</u>
- "The HNSciCloud project", H. Meinhard, CHEP 2016 ID:397, <u>https://indico.cern.ch/event/505613/contributions/2230727/</u>
- "Future approach to tier-0 extension", B. Jones, G. McCance, CHEP 2016 ID:22

