
Docker Swarm

First tests were performed with Docker 1.10 and Docker Swarm
1.2.3 deployed via Magnum. FTS3 configuration and x509
certificates have been installed directly on the Bays nodes and
mounted via Docker volumes.
We managed to run the 3 FTS container types without issues, but
we missed some functionalities implemented only in Docker 1.12 not
yet available at CERN via Magnum (Docker Service in particular).
Therefore we concentrated our testing to Kubernetes

Dockerized FTS

A single FTS VM deployment has been split in 3 different
containers (Server/Staging, REST, Web Mon) automatically built
via GitLab CI and published to GitLab Registry available at CERN.
Both Server/Staging and REST containers have been integrated
with the Monitoring infrastructure at CERN, based on
Flume/ES/Kibana, so logs are automatically published and metrics
are available on dedicated dashboards.

FTS is one of the pilots for the Magnum deployment at CERN. 2
clusters have been deployed for evaluation: Swarm and
Kubernetes. Mesos is also available since September, but has not
been evaluated yet.

Kubernetes

A Kubernetes (v 1.2.0) cluster deployed vía Magnum allowed us to:

● perform scaling of the FTS Server/Staging component according
to our needs. A first component in Python was developed
integrating Kubernetes REST API to autoscale based on the FTS
transfer queues.

● set up a unique REST API entry point via Kubernetes Services
and HA-Proxy. The FTS REST containers could be scaled over
the cluster transparently to users

● write log to Persistent Volumes (locally but EOS integration is also
foreseen)

● test rolling upgrades

Magnum

Magnum is an OpenStack API service making container
orchestration engines such as Docker Swarm, Kubernetes, and
Apache Mesos available as first class resources in OpenStack.

Magnum uses Heat to orchestrate an OS image which contains
Docker and Kubernetes and runs that image in either virtual
machines or bare metal in a cluster configuration.

The installation at CERN is using VMs for the moment and TLS
support. It has been extended with specific customizations for
HEP, like CVMFS and EOS support (under integration)

Deploying Container Based FTS on Openstack Magnum
Andrea Manzi, Alejandro Álvarez Ayllón, María Arsuaga Ríos, Ricardo Brito Da Rocha

fts-devel@cern.chhttps://fts3-service.web.cern.ch/

Future Work

The scaling at the level of the cluster VMs performed in Magnum via
Heat is the next item on the list, together with new tests with Swarm
when the latest features will be available. A mixed VM + Docker
deployment is now possible but we aim first at reaching the same
confidence at operating our VM cluster before eventually move to a
full dockerized FTS service in production.
Future developments FTS side, which will allow further isolation of
the Server, Staging, Optimizer and Scheduler functionalities are
foreseen: a micro-service architecture is crucial in order to benefit
from the Swarm/Kubernetes Orchestration.

Current deployment of FTS

FTS has been designed to be easy to scale horizontally just
adding more VMs to a server. Each instance is a clone running
the exact same set of services, with state persisted via a shared
MySQL database.

The service splits the load evenly across VMs, and when a node
enters or exits, the queue is readjusted accordingly, so each
instance runs a similar amount of transfers.

Issues with the current deployment

While we scale all services in parallel, the fact is that the scaling
needs of each one is different.

For instance, we may need to add a new VM to sustain the
amount of parallel transfers required to process the queue, but
there may be no staging operations pending, or the amount of
HTTP requests may actually remain constant.

Therefore, we are scaling services that do not need to scale.
These additional services will consume resources (mainly RAM),
that could be used to run more transfers in parallel.

Here we evaluate the containerization of FTS as a possible way
of independently scaling services, making the overall operation
cheaper in terms of computing resources.

MySQL

REST

Web Monitoring

Staging

Server

REST

Web Monitoring

Staging

Server

REST

Web Monitoring

Staging

Server

REST

Web Monitoring

Staging

Server

fts001.cern.ch fts002.cern.ch fts003.cern.ch fts004.cern.ch

FTS3 is the service responsible for globally distributing the majority of the LHC data across the WLCG infrastructure. Is a low level data
movement service, responsible for reliable bulk transfers of files from one site to another while allowing participating sites to control the
network resource usage

Links
https://gitlab.cern.ch/fts/docker-files/
https://gitlab.cern.ch/fts/fts-rest/container_registry
https://gitlab.cern.ch/fts/fts3/container_registry
https://gitlab.cern.ch/fts/fts-monitoring/container_registry

https://gitlab.cern.ch/fts/docker-files/
https://gitlab.cern.ch/fts/docker-files/
https://gitlab.cern.ch/fts/fts-rest/container_registry
https://gitlab.cern.ch/fts/fts-rest/container_registry
https://gitlab.cern.ch/fts/fts3/container_registry
https://gitlab.cern.ch/fts/fts3/container_registry
https://gitlab.cern.ch/fts/fts-monitoring/container_registry
https://gitlab.cern.ch/fts/fts-monitoring/container_registry

