Research and application of OpenStack in CSNS Computing environment

Yakang Li
Institute of High Energy Physics, CAS
Dongguan Neutron Science Center
2016/9/8

Agenda

About CSNS

- Accelerator-based neutron source
- Designed to provide multidiscipline research platforms with neutron scattering
- Operated by the Institute of High Energy Physics, CAS
- Located at Dongguan in Guangdong province of China
- Will be complete in 2018

About CSNS

- 80-MeV HLinac
- 1.6-GeV proton rapid cycling synchrotron (RCS)
- beam transport lines
- tungsten target station
- 3 initial spectrometers

Data Processing

Scenarios & Requirements

Appliaction

- OS(windows & Linux)
- Diverse Softwares

Diverse Host

- More Memery
- More CPUs

Expansibility

- More spectrometers
- More data

Computing Environment based on OpenStack

What is OpenStack?

Computing Environment based on OpenStack

Computing Environment based on OpenStack

Research and development

Unified Authentication

- Existing intergration schema doesn't meet the requirement
 - All stores in Idap
 - Too much change to Idap
- Loosely coupled schema
 - Local user and common user
 - To common users, only authencate username and password by Idap service
 - Other information authenticate through keystone local DB

Network

Virtual Network

- Disable L3-agent
- Physical gateway replace virtual router
- VMs directly connecte to the trunk mode switch

- To ensure the performance and stability of the network
- To achieve seamless communication directly with local network

Images & instances

- Images storage
 - Stored in glusterfs ssd volume

- Configuring instances at boot time
- Set a instance hostname
- Generate instance ssh private keys
- Automatically register in puppet, DNS, IPDB

Live Migration

- All instances shared storage with glusterfs volume
- Completed within a few seconds
- Instance will not stop in the migration process

Distributed Messaging System

- RPC Messaging is critical for OpenStack
- Default Messaging System
 - RabbitMQ

- Problems
 - single point failure
 - Difficult to scale out
 - Performance bottleneck

How to implement a broker-less architecture for OpenStack RPC

Distributed Messaging System

Distributed Messaging System

Source: Going brokerless, the transition from gpid to 0mq.

Dashboard

Dashboard

- RealTime Notification -> WebSocket Push
- Use socket.io running inside a NodeJS loop.
- A high performance websocket (RFC 6455) implementation has been added
- Using Redis as a message queue.
- Two instances of a uWSGI server:
 - one to handle normal HTTP requests for Django
 - one to handle WebSocket requests

Summary

- The overview about CSNS;
- OpenStack and virtualization technology are good solution according to the computing scenarios and requirements of CSNS;
- The overall architecture of computing environment based on OpenStack is introduced;
- Some R&D points are mainly demonstrated from the aspects of unified authentication, network, messaging system, etc;
- More advice, suggestion and helps are strongly expected

Thank You!

liyk@ihep.ac.cn CSNS

