CERN Web Frameworks strategy:

“use containers to host everything and to allow widen service options; use OpenShift to orchestrate all.”

Motivation and Goals

- **Modernize web central hosting:**
 - Support modern development frameworks
 - Provide more service flexibility
 - Reduce the need for “locally managed” web servers

- **Improve offering of tools to developers:**
 - Make it easier to get started
 - Automate application deployment
 - Integration with code hosting (GitLab)
 - CI/CD pipelines (GitLab/Jenkins)

- **Facilitate deployment and operation of web applications:**
 - Fast prototyping
 - Hosting of central services
 - Self-service templates for application instances
 - Save application manager from having to maintain OS as well
Implementation

• Deployment:
 • RedHat’s PaaS solution based on Docker and Kubernetes: OpenShift v3, Open source version: OpenShift Origin
 • Puppet-managed Openstack VMs, considering deployment on top of Openstack Magnum

• Infrastructure:
 • 27 VMs (2 clusters), 9TB of app volume storage (Cinder, NFS)

• Integration:
 • CERN WebServices: name allocation, management of project ownership and lifecycle, quota management
 • SSO authentication, E-group authorization
 • GitLab for code hosting and CI/CD pipelines
 • CVMFS storage, EOS storage

Use Cases

• Jenkins CI:
 • Self-service instances, Dynamically provisioned container slaves, better flexibility & resource efficiency than VMs

• Deploy 3rd party applications:
 • Off the shelf Docker images or customized for CERN use
 • CERN Central services

• Custom web application hosting:
 • Automated build and deployment from sources in GitLab
 • DBoD service provides databases as needed
 • Development, staging and prod environments
 • Support for multiple frameworks

Future:

• Generic web site hosting:
 • Serve static & CGI content from a shared filesystem (EOS)
 • OpenShift to enable more dynamic scaling, load spread and flexibility than VMs
 • 4000+ sites currently on AFS, 1000+ Drupal websites