
The Notre Dame CMS group operates a modest-sized Tier-3 site. Through the Center for Research Computing,
Notre Dame researchers have opportunistic access to roughly 25k CPU cores and 100 Gb/s WAN. We under-
took to use these resources for a wide range of CMS computing tasks from user analysis through large-scale
Monte Carlo production. We will discuss the challenges inherent in effectively utilizing CRC resources for
these tasks and the solutions deployed to overcome those challenges. We will also discuss current perfor-
mance and future refinements as well as interactions with the broader CMS computing infrastructure.

We are grateful to many people who assisted in constructing and troubleshooting this complex system; in particular, Jakob Blomer, Dan Bradley, and the CVMFS team; Dave Dykstra, Barry Blumenfeld and the
Frontier team; Matevz Tadel, Andrew Hanushevsky and the XRootD team; Andrew Melo, Alan Tackett, Matt Heller and the Vanderbilt T2 Team; and Serguei Fedorov and the CRC staff.

This work was supported in part by National Science Foundation grant OCI-1148330 and a Department of Education GAANN fellowship.

Scaling Up a CMS Tier-3 Site with Campus
Resources and a 100 Gb/s Network Connection:
What Could Go Wrong?
Matthias Wolf, Anna Woodard, Ben Tovar, Kenyi Hurtado Anampa, Paul Brenner, Kevin Lannon, Michael Hildreth, Douglas Thain

Center for Research Computing (CRC)
The CRC serves Notre Dame’s computa-
tional infrastructure needs. They adminis-
ter over 25,000 compute cores on approx-
imately 2,000. The resources comprise
both shared resources (~1/3) and faculty-
owned systems (~2/3). Two resource
schedulers run simultaneously: UGE and
HTCondor. Faculty owners have immedi-
ate access to their systems via UGE which
pre-empts & evicts opportunistic jobs
scheduled via HTCondor.

XRootD Proxy/Cache Servers
Challenges:
• A single cache proxy server is not enough!. The high CPU, memory load and high disk I/O this demands makes

having multiple servers more desirable, so load balancing is important, a cluster management daemon is run
to achieve this (this is part of the XRootD components).

• This is the first time a CMS Tier center uses XRootD caching proxy configuration at this scale. A collaboration
with XRootD developers started months ago, substantially improving
stability after 4 beta version releases (many thanks to Matevz Tadel
(UCSD) and Andrew Hanushevsky (SLAC)!).

The servers talk to a single redirector through the Cluster Management
System daemon (cmsd). We have started with 5 XRootD cache proxy
servers with a 10 Gb/s duplex network link and 24 TB storage disk each.
The servers were tuned to deliver 6-7 Gb/s of data transfer for produc-
tion workflows and we have achieved a sustained 30 minute average
bandwidth over 35 Gbps so far. We aim to achieve 50 Gbps sustained in
the coming year with further tuning and additional servers. Average bandwidth traffic coming

from the XRootD Servers

ND CMS Tier 3
Originally a self-contained cluster, ND’s
Tier-3 now serves as bridge into CRC
Resources, running the necessary ser-
vices (XRootD, Squid, OSG).

XRootD Proxy/Cache Configuration
CMS data files are globally distributed
via XRootD. Though the campus worker
nodes are not directly part of the 100
Gb/s network, they can access it via
proxy servers. Caching of CMS data
files on the local proxy servers allows
faster access by worker nodes and re-
duces incoming network traffic.

100 Gbps CMS Science DMZ
ND has constructed a Science DMZ connected to the nationalI2 & ESnet networks at 100Gb/s.

Challenges:
• Tuning Single Stream (baseline)
• Tuning Aggregate Streams (realistic)
• Network Contention/Variance
• DMZ Complexity
• Routing for Security and Performance
We have begun testing network performance between ND and CMS T1 and T2s. A 10Gb tuned Perf-
Sonar node runs automated tests to identify single data stream bottlenecks and baseline values. One
particular challenge arises because the goal is to aggregate multiple 10 Gb/s connections to fill the
100 Gb/s network link with transfers from multiple sites. It can be hard to spot bottlenecks that are
≥ 10 Gb/s. Example: For one T2 site, found a 10 Gb/s bottleneck in what was supposed to be a fully
100 Gb/s route because one link carrying half the traffic was accidentally not upgraded from 10 Gb/s
to 100 Gb/s.

Measurements using Perfsonar of
Bandwidth, Latency, and # of
hops. There is a loose correlation
between bandwidth and latency,
but there is enough variation from
one site to the next to suggest that
further debugging of network
connections could be beneficial.

ChallengesDMZ and Network

100 Gb/s Network

ANNA WOODARD

LOBSTER ANATOMY

• started by user
• tracks workers
• assembles tasks

on-the-fly
• unit accounting

7

• user starts a
factory to
submit workers

• runs tasks
• provides cache

(shared and
reused by tasks)

• runs a wrapper
which starts Parrot
if needed

• sets up working
environment

• executes cmsRun

master WQ worker task

lobster master
WQ worker

task

cache

wrapper

database parrot

cmsRununit

Lobster is an opportunistic workflow
manager, built on top of CCTools.

Workflow Management Lobster

Learn more about
Lobster!

Challenges and Solutions:
• Distribution of software to opportunistic nodes: Opportunistic resources accessed via CRC are not configured

for CMS. CMS software environment is delivered over network via CVMFS + Parrot. Workers maintain cache
of software that persists between tasks for lifetime of worker to minimize overhead in constructing CMS
software environment.

• Can be preempted from CRC resources abruptly: When owners of CRC system request resources, oppor-
tunistic user is preempted with no warning. Lobster gives the ability to run short tasks to minimize preemp-
tion losses. Task output merged in separate step to produce conveniently sized output files.

• Resource utilization: Users often have only vague idea of resource needs of tasks from local testing. Lobster
is built on CCTools components (Resource Monitor and Work Queue) that measures resource usage on run-
ning tasks and adjusts task resource needs accordingly. Resource Monitor also prevents tasks from crash-
ing opportunistic resources by exceeding requested resource allocation. Evolving task resource needs are
communicated back to user via monitoring plots, allowing user to tune worker resource allocations to best
match task needs.

• Resiliency in the face of transient failures: The dynamic nature of opportunistic resources makes transient
problems likely, resulting in potentially thousands of failed tasks. Lobster has built in redundancy for failure
prone aspects of tasks: cascading fallback of input and output transfer mechanisms, automatic task retrying,
and blacklisting of problematic worker nodes according to a user-configurable exit code list. Lobster tracks
task failures and successes and handles all retries without user intervention, which is essential for running
at scale.

• Scaling of Lobster master: As resource utilization scales to ~25k cores, it becomes challenging for the Lob-
ster master to keep up with returning tasks and starting new tasks. We are currently exploring techniques
to alleviate the load on the master, including use of WorkQueue foremen, delegating more accounting activity
to the individual tasks, and optimizing database and filesystem access.

(Above) Plot showing number of cores used by Lobster, peaking around 25k
cores. (Right) Accounting for time spent on processing versus time lost to
job failures, jobs being killed for exhausting their resources, jobs being
evicted, or delays in staging out that arising from the master becoming over-
loaded.

