
A modular (almost) automatic set-up
for elastic multi-tenants cloud (micro)infrastructures

F. Astorino(a), A. Amoroso(a,b), S. Bagnasco(b), N. A. Balashov(c), F. Bianchi(a,b), M. Destefanis(a,b), M. Maggiora(a,b), J. Pellegrino(a,b), L. Yan(b), T. Yan(d), X. Zhang(d), X. Zhao(d)

(a)University of Turin, (b)INFN-Turin, (c)Joint Institute for Nuclear Research (Dubna), (d)Institute of High Energy Physics, Chinese Academy of Sciences (Beijing)

CHEP2016

22nd International Conference on Computing in High Energy and Nuclear Physics

10th-14th October 2016 – San Francisco (USA)

The BESIIICGEM project has been funded by European Commission

within the call H2020-MSCA-RISE-2014.

OpenNebula
Physical hosts: servers hosting the Virtual Machines
• often called “Hypervisors” (like the software)
• KVM (OpenNebula supports also vCenter and Xen)
• monitoring daemons
• sshd for system connection

Networks

 Service and Storage network:
• monitoring and control information
• image transfers

Networks used by the Virtual Machines

 Private Network:
• private IPs
• intra-cloud communications

 Public Network:
• public IPs
• incoming connectivity to VMs

Control node: runs the OpenNebula stack
• oned (the main daemon)
• schedd (the VM scheduler)
• Sunstone (the web-based GUI)
• MySQL DB backend (can be separate)
• API services (OCCI or EC2)
• advanced services (OneFlow, OneGate,…)
• control node unavailability does not affect running VMs
• only control on them (start & stop, monitoring,…)

Storage

 Service datastores don’t necessarily need to be shared across VMs:
• images can be transferred to the hypervisors’ disk through ssh and started locally

 Image Repository Datastore:
• holds the OS images

 System Datastore
• holds the running instances
• if it’s a shared FS, VMs can be “live-migrated”

VMDIRAC
“VM director” (vs DIRAC “Pilot director”)
• starts VMs (vs DIRAC pilot jobs)

VMs at boot time start “pilot job”
• instantiated VMs behave just as other WNs

w.r.t. DIRAC WMS

Integrate Federated cloud into DIRAC
• OCCI compliant clouds:

OpenStack, OpenNebula
• CloudStack
• Amazon EC2

VM scheduler
• manages dynamic virtual machines

according to job status

Main functions
• Check Task queue and start VMs
• Contextualize VMs to be

WNs to the DIRAC WMS
• Pull jobs from central task queue
• Centrally monitor VM status
• VMs automatic shutdown

according to jobs queues

VMDIRAC architecture and components

 DIRAC server side
• VM Scheduler – gets job status from TQ and match it with

the proper cloud site, submits requests of VMs to Director
• VM Manager – takes statistics of VM status and decides if

needing new VMs
• VM Director – connects with cloud manager to start VMs
• Image context manager – contextualizes VMs to be WNs

 VM side
• VM monitor Agent – periodically monitors the status

of the VM and shutdowns VMs when no need
• Job Agent – just like “pilot jobs”, pulling jobs from TQ

 Configuration and load management
• is used to configure the joined cloud and the image
• starts VMS
• runs jobs on VMs

Automatic set-up of cloud (micro-)infrastructures

Automatic set-up
• network topology

Ingredients for an 1h setup
• few parameters left to user input

• network parameters
• keyboard layout, ..

• automatic hypervisor setup
• OpenNebula
• squid proxy
• rOCCI

• automatic WN setup
• full custom ISO for tenants

• repository for VM/templates
• QCOW2: dynamic increase

• minimal OS installation:
• only required software installed

• contextualisation via CVMFS
• validation:

• Sunstone
• create VMs locally
• run jobs locally
• submitting jobs via VMDIRAC

Automatic set-up
• create kickstart file
• prepare customized ISO

(CentOS-6.7-x86_64-netinstall.iso)

• make bootable usb drive
• install on server or client
• test the installation

Elasticity

On-demand usage
• elastic approach to cloud usage
• don’t occupy resources before jobs are coming:

• save money when you use commercial cloud
• VMDIRAC is one of the possible approaches allowing to use clouds elastically:

• HTCondor + Cloud scheduler, elastiq, …
• central Task Queue and cloud scheduler are required

Modular approach
• exploiting easy automatic set-up of cloud (micro-)infrastructures
• two OpenNebula instances:

• remote VMDIRAC drives the “private” OpenNebula
• the “private” OpenNebula cloud bursts to the “public” cloud interface

“Private” OpenNebula
• stake-holder has full sys-man control
• can interface multiple tenants (remote VMDIRACs)
• groups all the stake-holder’s tenants
• introduces one more layer in elasticity
• act as a simple tenant on the public OpenNebula

“Public” OpenNebula
• stake-holder

• acts as simple tenant
• has user-level control

A modular (almost) automatic set-up for elastic
multi-tenants cloud (micro)infrastructures

Real life scenarios
• consortium of independent tenants

• independent experiments (HEP) or applications (SME)
• want to act as a single stake-holder in large cloud infrastructures

• stake-holders proxying theirs different tenants: experiments (HEP) or deparments (LE)
• common resources procuring
• want to decouples internal accounting/access to resources from large CI

• small groups (HEP) or applications (SME) with limited resources and cloud skills:
• cloud micro-infrastructures exploiting automatic set-up
• can interface with remote VMDIRACs or incoming cloud-bursting

“Public” Cloud Infrastructure (OpenNebula or OpenStack)
• is not aware of the specific interaction with remote VMDIRACs (limited to the “private” ONs)
• only interaction is cloud bursting with “private” OpenNebulas
• gives stake-holders only user access to the “public” clound infrastructure
• can still perform elastically with the different stake-holders
• if the “public” clound infrastructure is managed directly by the stake-holder:

• can exploit automatic set-up of cloud (micro-)infrastructures
• can receive clould-bursting from trusted remote OpenNebulas

“Private” Open NebulaCloud Infrastructure (OpenNebula or OpenStack)
• stake-holder has full control at sys-man level
• interfaces with (remote) VMDIRACs of the different tenants of the stake-holder
• has full control of the tenants’ quotas in the “private” ON and hence on the “public” CI
• can perform elastically with the different tenants at the “private” ON level
• can elastically release resources on the “public” CI when not needed

