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OpenNebula
Physical hosts: servers hosting the Virtual Machines
• often called “Hypervisors” (like the software)
• KVM (OpenNebula supports also vCenter and Xen)
• monitoring daemons
• sshd for system connection

Networks

 Service and Storage network:
• monitoring and control information
• image transfers

Networks used by the Virtual Machines

 Private Network:
• private IPs
• intra-cloud communications

 Public Network:
• public IPs
• incoming connectivity to VMs

Control node: runs the OpenNebula stack
• oned (the main daemon)
• schedd (the VM scheduler)
• Sunstone (the web-based GUI)
• MySQL DB backend (can be separate)
• API services (OCCI or EC2)
• advanced services (OneFlow, OneGate,…)
• control node unavailability does not affect running VMs
• only control on them (start & stop, monitoring,…)

Storage

 Service datastores don’t necessarily need to be shared across VMs:
• images can be transferred to the hypervisors’ disk through ssh and started locally

 Image Repository Datastore:
• holds the OS images

 System Datastore
• holds the running instances
• if it’s a shared FS, VMs can be “live-migrated”

VMDIRAC
“VM director” (vs DIRAC “Pilot director”)
• starts VMs (vs DIRAC pilot jobs)

VMs at boot time start “pilot job”
• instantiated VMs behave just as other WNs

w.r.t. DIRAC WMS

Integrate Federated cloud into DIRAC
• OCCI compliant clouds: 

OpenStack, OpenNebula
• CloudStack
• Amazon EC2

VM scheduler
• manages dynamic virtual machines

according to job status

Main functions
• Check Task queue and start VMs
• Contextualize VMs to be

WNs to the DIRAC WMS
• Pull jobs from central task queue
• Centrally monitor VM status
• VMs automatic shutdown

according to jobs queues

VMDIRAC architecture and components

 DIRAC server side
• VM Scheduler – gets job status from TQ and match it with        

the proper cloud site, submits requests of VMs to Director
• VM Manager – takes statistics of VM status and decides if 

needing new VMs
• VM Director – connects with cloud manager to  start VMs
• Image context manager – contextualizes VMs to be WNs 

 VM side
• VM monitor Agent – periodically monitors the status

of the VM and shutdowns VMs when no need
• Job Agent – just like “pilot jobs”, pulling jobs from TQ

 Configuration and load management
• is used to configure the joined cloud and the image
• starts VMS
• runs jobs on VMs

Automatic set-up of cloud (micro-)infrastructures

Automatic set-up
• network topology

Ingredients for an 1h setup
• few parameters left to user input

• network parameters
• keyboard layout, ..

• automatic hypervisor setup
• OpenNebula
• squid proxy
• rOCCI

• automatic WN setup
• full custom ISO for tenants

• repository for VM/templates
• QCOW2: dynamic increase

• minimal OS installation:
• only required software installed

• contextualisation via CVMFS
• validation:

• Sunstone
• create VMs locally
• run jobs locally
• submitting jobs via VMDIRAC

Automatic set-up
• create kickstart file
• prepare customized ISO

(CentOS-6.7-x86_64-netinstall.iso)

• make bootable usb drive
• install on server or client
• test the installation

Elasticity

On-demand usage
• elastic approach to cloud usage
• don’t occupy resources before jobs are coming:

• save money when you use commercial cloud
• VMDIRAC is one of the possible approaches allowing to use clouds elastically:

• HTCondor + Cloud scheduler, elastiq, …
• central Task Queue and cloud scheduler are required

Modular approach
• exploiting easy automatic set-up of cloud (micro-)infrastructures
• two OpenNebula instances:

• remote VMDIRAC drives the “private” OpenNebula
• the “private” OpenNebula cloud bursts to the “public” cloud interface

“Private” OpenNebula
• stake-holder has full sys-man control 
• can interface multiple tenants (remote VMDIRACs)
• groups all the stake-holder’s tenants
• introduces one more layer in elasticity
• act as a simple tenant on the public OpenNebula

“Public” OpenNebula
• stake-holder

• acts as simple tenant
• has user-level control

A modular (almost) automatic set-up for elastic 
multi-tenants cloud (micro)infrastructures

Real life scenarios
• consortium of independent tenants

• independent experiments (HEP) or applications (SME)
• want to act as a single stake-holder in large cloud infrastructures

• stake-holders proxying theirs different tenants: experiments (HEP) or deparments (LE)
• common resources procuring
• want to decouples internal accounting/access to resources from large CI

• small groups (HEP) or applications (SME) with limited resources and cloud skills:
• cloud micro-infrastructures exploiting automatic set-up
• can interface with remote VMDIRACs or incoming cloud-bursting

“Public” Cloud Infrastructure (OpenNebula or OpenStack)
• is not aware of the specific interaction with remote VMDIRACs (limited to the “private” ONs)
• only interaction is cloud bursting with “private” OpenNebulas
• gives stake-holders only user access to the “public” clound infrastructure
• can still perform elastically with the different stake-holders
• if the “public” clound infrastructure is managed directly by the stake-holder:

• can exploit automatic set-up of cloud (micro-)infrastructures
• can receive clould-bursting from trusted remote OpenNebulas

“Private” Open NebulaCloud Infrastructure (OpenNebula or OpenStack)
• stake-holder has full control at sys-man level
• interfaces with (remote) VMDIRACs of the different tenants of the stake-holder
• has full control of the tenants’ quotas in the “private” ON and hence on the “public” CI
• can perform elastically with the different tenants at the “private” ON level
• can elastically release resources on the “public” CI when not needed 


