

Abstracting application deployment on Cloud infrastructures

Application deployment on Cloud

Common requirements from users

- The application and its supporting services should be highly available
- Horizontal scaling should be as painless as possible
- The entire application stack should be deployable on a range of

Challenges with an laaS-only approach

- ✓ Infrastructure-as-a-Service is a lowlevel abstraction
- Horizontal scaling is difficult and requires human intervention
- ✓ Re-deploying the application stack is error-prone and time consuming
 ✓ All aspects of the application lifecycle are not covered
 ✓ Virtual infrastructure resources are the highest abstraction level available
 ✓ Highly specialized skillset required to deploy a complex application

Goals

- Provide a suitable abstraction
 level which hides the laaS details
 as much as possible
- Automate all aspects of the application lifecycle from deployment to scaling
 Make deployments reproducible across clouds with similar characteristics

- different clouds with minimal friction
- Focus on high level aspects of the application
- Virtual infrastructure resources should be abstracted away
- Application complexity should not get in the way

Abstraction layer

We developed a two-level abstraction layer to simplify application deployment

Cloud side abstraction – Orchestration custom templates

- ✓ Abstraction from application details
- Application components and dependencies such as backends (e.g. databases, filesystem, cache system) are described by custom templates
- ✓ Control on the order of services instantiation

- Error chance limited
- Deployment time decisively reduced
- Significant advantage in deploy recurring infrastructures and testbeds

User side abstraction - Web interface

- ✓ Abstraction from application details
- ✓ Abstraction from Cloud infrastructure
- ✓ Easy-to-use instrument for not skilled users
- ✓ Possibility to scale the application

Dependencies					
Backend3	Backend2	Backend1			
laaS (e.g. OpenStack)					

Use cases

Present	ļ	HA(x, x, x, x) http://chaos.infn.it	Future	
Users	ICHAOS remote control units	 Control system based on Highly Abstracted 	INDIGO - DataCloud https://www.indigo-datacloud.eu	PLATEDRM http://www.opencityplatform.eu
		and Open Structure ✓ Orchestration through	 EC Horizon 2020 project Standardization of the 	 Italian Project funded by Government
		OnonStack Hoat	Orchestration service based on	✓ Automated deployment

- OpenStack Heat
 PHP based GUI
 exploiting Heat APIs
 Manually scaling
 backend components
 Deployment time
 reduced from days to
 minutes
- TOSCA templates
- Standard Web interfaces as
 Future Gateway programmable interface
- Dynamic deployment of a virtual site for interactive analysis
 Virtual batch systems on opportunistic cloud

Automated deployment and scaling of highdemand applications for Public Administrations

C. Aiftimiei¹, E. Fattibene¹, R. Gargana², M. Panella¹, D. Salomoni¹ INFN-CNAF Bologna (Italy)¹, INFN-LNF Frascati (Italy)² matteo.panella@cnaf.infn.it