

Introduction Campus Computing

Description of generic campus situation (ex. MIT)

- · Large variety of research areas: engineering, maths, sciences, social sciences
- Most need large computing at times and have some computing resources
 - · some resources shared but not widely, usage not 100% for all of them
 - · no accurate inventory of all existing resources
- · Most resources use some linux variant of similar versions

Some Issues

- Researches have peak demands that exceed their resources
- · Often though the resources are not fully used
- Account management is work intensive

Introduction Campus Computing

Big computing centers do not work

Requirements for a new model

- · Minimally expensive: money and human resources
- · Technically feasible and attractive for most research efforts
- · Use existing resources, but leave owners maximal control
- · Reach beyond campus as needed/wanted

Virtual Computing Center: Pretend to be big

- · Create a common login pool, big enough for tests
- · Connect this pool to each campus computing resource
- · Also connect to external resources: ex. OSG

Implemetation Details - MIT

Pilot factories – HTCondor based

- · frontend submits pilots to resources
- · workers pull in matching work

Open Science Grid – OSG - plenty of resources across US OSG FrontEnd Limited to CMS CMS

FrontEnd

Campus CMS Tier-3 **HPRCF** – Bates includes CMS Tier-2 Campus FrontEnd EAPS cluster Earth and Planetary Sciences Virtual Center 'subMIT'

CMS Computing

- CMS resources across world

Implementation Details - MIT

How are jobs running?

- FrontEnd submits glideIn pilots through BOSCO to the various resources submit nodes (local flavor)
- On subMIT user jobs get submitted to a HTCondor collector
- Physical workers are matched at subMIT and pull down their work
- subMIT becomes a huge virtual resource, real work is done at the physical worker
- At completion output is shipped as specified

Submit Node

HTCondor worker process

Conclusions

The Virtual Computing Center

- · Viable, pragmatic solution for generic campus computing
- · Covers most use cases, but not all
- Allows maximal flexibility: all resources can be separately registered and used, but also controlled by owners
- Specific fully functional prototype implemented at MIT using OSG based tools: HTCondor, bosco, glidelnWMS pilots
- Prototype provided over 30M CPU hours to MIT based researchers

What next?

- · Some investment needed to establish infrastructure and support
- Users need to re-learn some, but win big
- · Resource owners need to be convinced and have to adjust
- · Need to find all other resources on campus and connect them