

22nd International Conference on Computing in High Energy and Nuclear Physics, Hosted by SLAC and LBNL, Fall 2016

Benchmarking using LHCb production jobs

Ph.Charpentier LHCb - CERN

What is benchmarking?

- A lot of configurations
 - * Hyperthreading, memory, number of slots per box etc...
- Each computing slot has its own computing capability
 - * Let's call it "CPU-power"
- WLCG relies on HEP-SpecO6 as power unit
 - * Well defined procedure (but defined in 2007!)
 - * E.g. Compiled in 32-bit mode, with certain set of compiler flags
 - * Applications use 64-bit, different compiler flags
 - * At the time it was verified that HSO6 was scaling with HEP application
- Scaling: what does it mean?
 - Run different applications (incl. HS06)
 - * On very different setups, i.e. different power
 - Verify that all benchmarks are proportional
 - * Benchmark for applications: number of events per second

Why is benchmarking important?

- When a pilot starts on a computing slot:
 - Before requesting a job, make sure it can run to the end
 - Allows to run multiple payloads and make job masonry
- How to compute CPU-work capability?
 - Most systems allow a (pilot) job to run for a certain time
 - * Expressed in real clock seconds of CPU
 - CPU-work = slot-time-left * CPU-Power
 - CPU-Power is the result of benchmarking (whatever)
- Benchmarking is also useful for accounting

Available benchmarking

• Application benchmark (JobPower)

- ~ CPUTime / NumberOfEvents
 - * Initialisation + finalisation negligible if enough events
- Events are very similar (on average) or the same
- Use productions: many jobs on many sites

• LHCb applications

MC simulation

🛪 Gauss, using geant4, typically 2000 HS06.s

Event reconstruction

- * Brunel, between 10 and 20 HS06.s
 - * Different for real data and MC events
- Stripping (a.k.a. skimming)
 - ☆ DaVinci (physics selection), typically 5 HS06.s

Check linearity of CPU-time with Nb of events (MC and Reco)

Comparison between JobPower and DB16

JobPower and DB16: WN model dependency

Stripping53484 - SiteModel vs Job/Dirac at GRIDKA, PIC, RAL

RAL-QEMUVirtualCPUversion(cpu64-rhel6) RAL-Intel(R)Xeon(R)CPUX5650@2.67GHz BAL-Intel(B)Xeon(B)CPUE5645@2 40GHz RAL-Intel(R)Xeon(R)CPUE5520@2.27GHz RAL-Intel(R)Xeon(R)CPUE5-26700@2.60GHz RAL-Intel(R)Xeon(R)CPUE5-26600@2.20GHz RAL-Intel(R)Xeon(R)CPUE5-2650v2@2.60GHz RAL-Intel(R)Xeon(R)CPUE5-2640v3@2.60GHz PIC-Intel(B)Xeon(B)CPUX5650@2.67GHz PIC-Intel(R)Xeon(R)CPUE5645@2.40GHz PIC-Intel(R)Xeon(R)CPUE5-2650v2@2.60GHz PIC-Intel(R)Xeon(R)CPUE5-26500@2.00GHz PIC-Intel(R)Xeon(R)CPUE5-2640v3@2.60GHz GRIDKA-Intel(R)Xeon(R)CPUE5630@2.53GHz GBIDKA-Intel/B)Xeon/B)CPUE5-26700@2.60GHz GRIDKA-Intel(R)Xeon(R)CPUE5-26650@2.40GHz GRIDKA-Intel(R)Xeon(R)CPUE5-2660v3@2.60GHz GRIDKA-Intel/R)Xeon/R)CPUE5-2630v4@2 20GHz GRIDKA-Intel(R)Xeon(R)CPUE5-2630v3@2.40GHz GRIDKA-AMDOpteron(tm)Processor6376 GBIDKA-AMDOnteron(tm)Processor6174 GBIDKA-AMDOnteron(tm)Processor6168

Reco51872 - SiteModel vs Job/Dirac at RAL, GRIDKA, PIC

- Large WN model dependency
- Similar pattern for Simulation and Reconstruction
 - Although not quite identical...
 - Slightly better match for Simulation
 - Simulation scales better with DB16

Comparison between JobPower and HS06

Comparing Simulation and Reconstruction with HS06

Conclusions

Backup slides

Comparing Simulation and Reconstruction

rnnppe.Cnarpentier@cern.ch

More on WN model dependency

