
Experience on HTCondor batch
system for HEP and other

research fields at KISTI-GSDC
Sang Un Ahn, Sangwook Bae, Amol Jaikar, Jin Kim,

Byungyun Kong, Ilyeon Yeo

13 October 2016
@CHEP2016, San Francisco

Introduction
 GSDC Job Profiling for 2015 showed that resource utilization of

global services varies from 65%(B) to 90%(A) while that of local
services is below 25%(D) (worst 0.7%(C))

 Consistent job throughput
from Grid consumed resources
effectively (A, B)

 Chaotic job activities of
local users led to
low resource utilization (C, D)

2016-10-13 CHEP2016 2

S. U. Ahn, J. Kim, “Profiling Job Activities of Batch Systems in the Data Center”, PlatCon 2016

A: ALICE, B: Belle II, C: CMS, D: LIGO

Goal
 To improve resource utilization by allocating idle resources to

where demanded (dynamic resource management)

 Constraints:
 Resources are dedicated to each experiment based on MoU and

being audited regularly on physical allocation
– Dedicated resources are preferred by users since they can secure

resources when crowded, esp. before conferences

 Batch systems are different: Torque for EMI (ALICE and Belle II),
HTCondor for OSG (CMS) and LDG (LIGO)
– Queues cannot be shared between Torque and HTCondor

2016-10-13 CHEP2016 3

Goal #2
 To have one batch system for all: HTCondor

– Already have operation experience

– Actively developed and widely used nowadays

 Some issues with Torque
– Instability issue with Maui scheduler – required to re-start occasionally

• Workaround: setting a cron job to check the health of maui service and re-start if
required

– Any change in “nodes” requires Torque to be re-started
• Not applicable to a huge pool (more than thousands)

 Constraints:

 HTCondor is incompatible with CREAM-CE

2016-10-13 CHEP2016 4

Procedure
 Step 1:

 Set-up a HTCondor pool for all Local farms

– In addition to CMS and LIGO, there are a few more experiments we
support: Genome (HTCondor), RENO and TEM (Torque)

 Step 2:

 Set-up a bigger pool including Grid farms

– Replacing CREAM-CE by HTCondor-CE

– Or making some modification on communicating part between
CREAM-CE and Batch system

2016-10-13 CHEP2016 5

Obstacles
 Step 1:

 We have some experience on HTCondor but, resource
dedication does not require complicated scheduling policy

i.e. we have few knowledges on HTCondor configuration

 Step 2:

 CREAM-CE is not easily replaced by HTCondor-CE since EMI
middleware does not support HTCondor-CE

 Modification on CREAM-CE requires additional man-power

2016-10-13 CHEP2016 6

Requirements
 Dynamic Resource Allocation within a HTCondor Pool

– Resources written in MoU should be guaranteed when users demand

 Separate User Interfaces
– Sharing UI among different user groups may cause some issues:

• Compilation on UI before job submission may affect overall performance of the machine badly
• Exposure of mount points for experiment data or scratch may have potential security glitches even

though the access by others is not allowed

 Remote Submission
– Independent Schedd machines managing shared queues

 High Availability
– Schedd
– Central Manager: Collector, Negotiator

2016-10-13 CHEP2016 7

Test-bed Setup

2016-10-13 CHEP2016 8

UI Schedd

CM

Startd

UI Schedd

CM

condor_q
condor_submit

Machine Info

Matchmakingcondor_status

72 slots

sched1.example.com
sched2.example.com

cm1.example.com
cm2.example.com

ui1.example.com
ui2.example.com

wn1.example.com
…
wn9.example.com

UID_DOMAIN = example.com
CENTRAL_MANAGER1 = cm1.example.com
CENTRAL_MANAGER2 = cm2.example.com
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

HA Daemons

2016-10-13 CHEP2016 9

SCHEDD_NAME = had_schedd@
MASTER_HA_LIST = SCHEDD
HA_LOCK_URL = file:/var/lib/condor/spool (NFS exported)
VALID_SPOOL_FILES = $(VALID_SPOOL_FILES) SCHEDD.lock

DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION
STATE_FILE = $(SPOOL)/Accountantnew.log

UI Schedd

CM

Startd

UI Schedd

CM

Accounting Group
 Define Accounting Group for sharing resources among several user groups

– negotiator configuration
• GROUP_NAMES = group_alice, group_cms, group_ligo, group_reno …

 Place quota and allow to exceed the limit
– negotiator configuration

• GROUP_QUOTA_group_alice, GROUP_QUOTA_group_cms, …
• GROUP_ACCEPT_SURPLUS = True

 Preemption enabled to guarantee the quota
– negotiator configuration

• NEGOTIATOR_CONSIDER_PREEMPTION = True
• PREEMPTION_REQUIREMENTS = $(PREEMPTION_REQUIREMENTS) &&

(((SubmitterGroupResourcesInUse < SubmitterGroupQuota) && (RemoteGroupResourcesInUse >
RemoteGroupQuota)) || (SubmitterGroup =?= RemoteGroup))

2016-10-13 CHEP2016 10

Ref: http://erikerlandson.github.io/blog/2012/06/27/maintaining-accounting-group-quotas-with-preemption-policy/

DEMO

2016-10-13 CHEP2016 11

[alice_user1@sched1 ~]$ condor_status -format "%s" AccountingGroup -format " | %s" State -format " | %s\n" Activity -constraint 'True' | sort | uniq -c | awk '{print $0; t
+= $1 } END { printf("%7d total\n",t)}'
10 group_belle.belle_user1@example.com | Claimed | Busy
10 group_cms.cms_user1@example.com | Claimed | Busy
10 group_genome.genome_user1@example.com | Claimed | Busy
20 group_ligo.ligo_user1@example.com | Claimed | Busy
10 group_reno.reno_user1@example.com | Claimed | Busy
12 | Unclaimed | Idle
72 total

 No activity from group_alice, then everybody freely shares the resources as much as they want
 A group_alice user login and check the status and it shows that only 12 slots are available

[alice_user1@sched1 ~]$ condor_submit job
Submitting job(s)..
40 job(s) submitted to cluster 32.

 Regardless the number of slots available, alice_user1 claims 40 slots

40 group_alice.alice_user1@example.com | Claimed | Busy
4 group_belle.belle_user1@example.com | Claimed | Busy
10 group_cms.cms_user1@example.com | Claimed | Busy
3 group_genome.genome_user1@example.com | Claimed | Busy
11 group_ligo.ligo_user1@example.com | Claimed | Busy
4 group_reno.reno_user1@example.com | Claimed | Busy
72 total

…
accounting_group = group_<exp>
accounting_group_user = <exp>_user1
…

Job Description FileGROUP_QUOTA_group_alice = 40
GROUP_QUOTA_group_cms = 12
GROUP_QUOTA_group_ligo = 8
GROUP_QUOTA_group_belle = 4
GROUP_QUOTA_group_reno = 4
GROUP_QUOTA_group_genome = 4

Qouta ligo user gets cms unused slots
 Preempted jobs goes to idle state

Remarks
 Delicate allocation policy is required when preemption enforced

– Treatment on preempted jobs: Kill or Suspend?
– Checkpoint would help preempted jobs resumed in other places

• Checkpoint is known to only work with Standard Universe
• But there is a way that it works with Vanilla Universe:

http://www.ucs.cam.ac.uk/scientific/camgrid/technical/blcr

 Fairshare based on user priority affects in a way that preemption does not
work
– Setting PRIORITY_HALFLIFE to high enough makes user priority (effectively) constant

 By default, remote job submission requires stronger security
– Password, FS (or FS_remote) are not working
– GSI, Kerberos methods has to be setup

2016-10-13 CHEP2016 12

http://www.ucs.cam.ac.uk/scientific/camgrid/technical/blcr

To do
 Fine tuning on negotiator configuration is required to deploy

the test-bed setup in production level

– Should come with delicate resource policy

 Setup and test a Dedicated Scheduler for jobs submitted with
Parallel Universe in order to allow a job to be run on two or
more physical machines at the same time

– 30% of Local LIGO user jobs run with MPI

 HTCondor-CE study for Grid

2016-10-13 CHEP2016 13

Conclusions
 We setup a test-bed with HTCondor to achieve the followings:

– Dynamic resource allocation

– One batch system for all

 Simple and quick setup showed that we could do what we
want

 Just took one step towards the HTCondor world

– Lots of things to study

2016-10-13 CHEP2016 14

References
 HTCondor Manual v8.4.X

– http://research.cs.wisc.edu/htcondor/manual/v8.4/

 HTCondor: How To Admin Recipes

– https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

 Maintaining Accounting Group Quotas with Preemption Policy

– http://erikerlandson.github.io/blog/2012/06/27/maintaining-accounting-group-quotas-with-preemption-policy/

 Checkpointing Vanilla Jobs with BLCR

– http://www.ucs.cam.ac.uk/scientific/camgrid/technical/blcr

2016-10-13 CHEP2016 15

http://research.cs.wisc.edu/htcondor/manual/v8.4/
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes
http://erikerlandson.github.io/blog/2012/06/27/maintaining-accounting-group-quotas-with-preemption-policy/
http://www.ucs.cam.ac.uk/scientific/camgrid/technical/blcr

