Experience on HTCondor batch system for HEP and other research fields at KISTI-GSDC

Sang Un Ahn, Sangwook Bae, Amol Jaikar, Jin Kim, Byungyun Kong, Ilyeon Yeo

> 13 October 2016 @CHEP2016, San Francisco

Introduction

- GSDC Job Profiling for 2015 showed that resource utilization of global services varies from 65%(B) to 90%(A) while that of local services is below 25%(D) (worst 0.7%(C))
- Consistent job throughput from Grid consumed resources effectively (A, B)
- Chaotic job activities of local users led to low resource utilization (C, D)

A: ALICE, B: Belle II, C: CMS, D: LIGO

S. U. Ahn, J. Kim, "Profiling Job Activities of Batch Systems in the Data Center", PlatCon 2016 CHEP2016

Goal

- To improve resource utilization by allocating idle resources to where demanded (dynamic resource management)
- Constraints:
- Resources are dedicated to each experiment based on MoU and being audited regularly on physical allocation
 - Dedicated resources are preferred by users since they can secure resources when crowded, esp. before conferences
- Batch systems are different: Torque for EMI (ALICE and Belle II), HTCondor for OSG (CMS) and LDG (LIGO)

Queues cannot be shared between Torque and HTCondor

Goal #2

To have one batch system for all: HTCondor

- Already have operation experience
- Actively developed and widely used nowadays

Some issues with Torque

- Instability issue with Maui scheduler required to re-start occasionally
 - Workaround: setting a cron job to check the health of maui service and re-start if required
- Any change in "nodes" requires Torque to be re-started
 - Not applicable to a huge pool (more than thousands)
- Constraints:
- HTCondor is incompatible with CREAM-CE

Procedure

- Step 1:
- Set-up a HTCondor pool for all Local farms
 - In addition to CMS and LIGO, there are a few more experiments we support: Genome (HTCondor), RENO and TEM (Torque)
- Step 2:
- Set-up a bigger pool including Grid farms
 - Replacing CREAM-CE by HTCondor-CE
 - Or making some modification on communicating part between CREAM-CE and Batch system

Obstacles

- Step 1:
- We have some experience on HTCondor but, resource dedication does not require complicated scheduling policy i.e. we have few knowledges on HTCondor configuration
- Step 2:
- CREAM-CE is not easily replaced by HTCondor-CE since EMI middleware does not support HTCondor-CE
- Modification on CREAM-CE requires additional man-power

Requirements

- Dynamic Resource Allocation within a HTCondor Pool
 - Resources written in MoU should be guaranteed when users demand
- Separate User Interfaces
 - Sharing UI among different user groups may cause some issues:
 - Compilation on UI before job submission may affect overall performance of the machine badly
 - Exposure of mount points for experiment data or scratch may have potential security glitches even though the access by others is not allowed

Remote Submission

- Independent Schedd machines managing shared queues

High Availability

- Schedd
- Central Manager: Collector, Negotiator

Test-bed Setup

2016-10-13

CHEP2016

HA Daemons

SCHEDD_NAME = had_schedd@ MASTER_HA_LIST = SCHEDD HA_LOCK_URL = file:/var/lib/condor/spool (NFS exported) VALID_SPOOL_FILES = \$(VALID_SPOOL_FILES) SCHEDD.lock

Accounting Group

Define Accounting Group for sharing resources among several user groups

- negotiator configuration
 - GROUP_NAMES = group_alice, group_cms, group_ligo, group_reno ...

Place quota and allow to exceed the limit

- negotiator configuration
 - GROUP_QUOTA_group_alice, GROUP_QUOTA_group_cms, ...
 - GROUP_ACCEPT_SURPLUS = True

Preemption enabled to guarantee the quota

- negotiator configuration
 - NEGOTIATOR_CONSIDER_PREEMPTION = True
 - PREEMPTION_REQUIREMENTS = \$(PREEMPTION_REQUIREMENTS) && (((SubmitterGroupResourcesInUse < SubmitterGroupQuota) && (RemoteGroupResourcesInUse > RemoteGroupQuota)) || (SubmitterGroup =?= RemoteGroup))

DEMO

- No activity from group_alice, then everybody freely shares the resources as much as they want
- A group_alice user login and check the status and it shows that only 12 slots are available

[alice_user1@sched1 ~]\$ condor_status -format "%s" AccountingGroup -format " | %s" State -format " | %s\mm" Activity -constraint 'True' | sort | uniq -c | awk '{print \$0; t
+= \$1 } END { printf("%7d total\mm",t)}'
10 group_belle.belle_user1@example.com | Claimed | Busy
10 group_genome.genome_user1@example.com | Claimed | Busy
20 group_ligo.ligo_user1@example.com | Claimed | Busy
10 group_reno.reno_user1@example.com | Claimed | Busy
10 group_reno.reno_user1@example.com | Claimed | Busy
12 | Unclaimed | Idle
72 total

Regardless the number of slots available, alice_user1 claims 40 slots

[alice_user1@sched1 ~]\$ condor_submit job Submitting job(s) 40 job(s) submitted to cluster 32.	40 group_alice.alice_user1@example.com Claimed Busy 4 group_belle.belle_user1@example.com Claimed Busy 10 group_cms.cms_user1@example.com Claimed Busy 3 group_genome.genome_user1@example.com Claimed Busy 11 group_ligo.ligo_user1@example.com Claimed Busy 4 group_reno.reno_user1@example.com Claimed Busy 72 total	
Qouta GROUP_QUOTA_group_alice = 40 GROUP_QUOTA_group_cms = 12 GROUP_QUOTA_group_ligo = 8 GROUP_QUOTA_group_belle = 4	 ligo user gets cms unused slots Job Description File Preempted jobs goes to idle state 	
GROUP_QUOTA_group_reno = 4 GROUP_QUOTA_group_genome = 4 2016-10-13	accounting_group_user = <exp>_user1 CHEP2016</exp>	1

Remarks

- Delicate allocation policy is required when preemption enforced
 - Treatment on preempted jobs: Kill or Suspend?
 - Checkpoint would help preempted jobs resumed in other places
 - Checkpoint is known to only work with Standard Universe
 - But there is a way that it works with Vanilla Universe: http://www.ucs.cam.ac.uk/scientific/camgrid/technical/blcr
- Fairshare based on user priority affects in a way that preemption does not work
 - Setting PRIORITY_HALFLIFE to high enough makes user priority (effectively) constant
- By default, remote job submission requires stronger security
 - Password, FS (or FS_remote) are not working
 - GSI, Kerberos methods has to be setup

To do

- Fine tuning on negotiator configuration is required to deploy the test-bed setup in production level
 - Should come with delicate resource policy
- Setup and test a Dedicated Scheduler for jobs submitted with Parallel Universe in order to allow a job to be run on two or more physical machines at the same time
 - 30% of Local LIGO user jobs run with MPI
- HTCondor-CE study for Grid

Conclusions

- We setup a test-bed with HTCondor to achieve the followings:
 - Dynamic resource allocation
 - One batch system for all
- Simple and quick setup showed that we could do what we want
- Just took one step towards the HTCondor world

 Lots of things to study

References

- HTCondor Manual v8.4.X
 - <u>http://research.cs.wisc.edu/htcondor/manual/v8.4/</u>
- HTCondor: How To Admin Recipes
 - <u>https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes</u>
- Maintaining Accounting Group Quotas with Preemption Policy
 - <u>http://erikerlandson.github.io/blog/2012/06/27/maintaining-accounting-group-quotas-with-preemption-policy/</u>
- Checkpointing Vanilla Jobs with BLCR
 - <u>http://www.ucs.cam.ac.uk/scientific/camgrid/technical/blcr</u>