
Stealth Cloud: How not to waste CPU 
during grid to cloud transitions

Daniela Bauer & Simon Fayer



The Problem

● In 2013 when we first started looking at clouds 
there was little expertise by users and admins 
on how to best make use of them

● In order to solicit interest, our cloud had to be a 
reasonable size...

● …but we couldn't afford to have too many 
compute nodes sitting idle, especially with work 
submitted via various grid channels waiting



Scenario

● User wants to run a Grid job
– Submits using any usual mechanism to “UKI-LT2-

IC-HEP”

– Job either runs on local batch system or a cloud 
WN depending on matched CE

● Completely transparent; user happy

● User actually needs a cloud
– They either have an image to boot or want to run a 

service

– Direct submission to a specific cloud using the 
usual cloud interfaces



The Setup

User

GridPP
CloudDIRAC

WMS
glideins arcsubmit

“The Grid”

HTCondor
(gwms

submit module)

ARC-CE
glideinWMS v3_2

HTCondor

HTCondor
Requests user job

Requests
VMs

VMs

Starts VMs

Nova / EC2 / Web

Accounting via APEL



Cloud Configurations
● Tested with multiple OpenStack versions / configurations:

– Icehouse & Juno
● In-built EC2 interface
● Gluster glance backend
● Nova networking initially → Migrated to Neutron as part of the Juno 

upgrade

– Kilo
● External EC2 with VPC patch
● CEPH glance backend
● Neutron networking

– Mitaka (for testing only)
● Unpatched external EC2 interface
● Nova networking
● Local/POSIX glance backend



Payload Image
● Images are built using CloudStamp[1]:

– Kickstart based RHEL installation
– One-shot puppet application

● Installs base WN / GlideinWMS bootstrap
● Configures users, start-up scripts, etc...

– Image compression 

● Images are bundled as compressed QCOW2 and 
uploaded to OpenStack

● On boot, GlideinWMS bootstrap processes instance 
user-data and pulls job

● Once job has completed, VM waits 10 mins (blackhole 
WN prevention) and halts itself

[1] https://github.com/sfayer/cloudstamp



Grid vs Cloud usage

Time

N
um

be
r 

of
 c

or
es

Grid
Cloud



No queuing in OpenStack
● New VM requests to OpenStack fail if resources aren't 

available
– Very unlike a traditional batch system

● Partition the cloud into “grid” and “cloud” tenants
– The grid tenant must be dynamically expanded to use up the 

free space
● If set too large, cloud work will never get to run
● If too small, too many slots are left idle

● A python script manages the available tenant quota
– Leaves a small window (currently ~10 slots) idle for “real” 

cloud workloads
– Scales grid quota down more if window is full and vice versa



Making room for the cloud

Time

N
um

be
r 

of
 c

or
es

Grid
Cloud

Grid Quota



Problems
● OpenStack needs an expert

– Generating a constant stream of VM requests from the grid side 
helped find a large number of deployment errors:

● E.g. size of database hard to predict

● GlideinWMS makes extensive use of SSH keys
– Older versions lost track of keys and eventually exceeded tenant 

quota

● gLexec CMS test warnings
– Expects different mappings based on VOMS role, current VMs 

only match by DN

● Regular rebuilding of images
– Images contain trust anchors which need updating quite frequently 

→ Maybe switch to CVMFS for this?



The Future

● This has been working nicely (for years!), but...
– Lacks monitoring

– No Multi-core job support

– Longer lived VMs would be more efficient (Requires 
Machine Job Features (MJF)?)

● Switch to newer technologies
– vcycle (needs to be specifically supported by 

experiments)

– HTCondorCE 

– VMDirac (part of GridPP DIRAC server)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

