Extending the farm on external sites: the INFN Tier-1 experience

Luca dell’Agnello
INFN-CNAF
CHEP 2016
S. Francisco, October 10 2016
INFN

- **National Institute for Nuclear Physics (INFN)** is funded by Italian government
- Main mission is the research and the study of elementary particles and physics laws of the Universe
- Composed by several units
 - ~ 20 units dislocated at the main Italian University Physics Departments
 - 4 Laboratories
 - 3 National Centers dedicated to specific tasks
- **CNAF** is a National Center dedicated to computing applications
The Tier-1 at INFN-CNAF

- WLCG Grid site started as computing center for LHC experiments (ATLAS, CMS, LHCb, ALICE)
 - Nowadays provides services and resources to ~30 other scientific collaborations
- ~1,000 WNs, ~21,500 computing slots, ~220 kHS06
 - LSF as current Batch System, HTCondor migration foreseen
 - Also small (~33 TFlops) HPC cluster available with IBA
- 22 PB SAN disk (GPFS), 43 PB on tape (TSM) integrated as an HSM
 - Also supporting LTDP for CDF experiment
- Dedicated network channel (60 Gb/s) for LHC OPN + LHC ONE
 - 20 Gb/s reserved for LHC ONE
 - Upgrade to 100 Gb/s connection in 2017
Computing resource usage

- Computing resources always completely used at CNAF with a large amount of waiting jobs (~50% of the running jobs)

INFN Tier-1 farm usage in 2016
Computing resource usage

- Computing resources always completely used at CNAF with a large amount of waiting jobs (~50% of the running jobs)
- Expected huge resource increase in the next years mostly coming from LHC experiments

INFN Tier-1 farm usage in 2016

INFN Tier-1 resource increase
Toward a (semi-)elastic Data Center?

• Planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)

• A complementary solution could be (dynamic) extension on remote farms

• Cloud bursting on commercial provider
 – Tests of opportunistic computing on Cloud providers

• Static allocation of remote resources
 – First production use case: part of 2016 pledged resources for WLCG experiments at CNAF are in Bari-ReCaS

• Also participating to HNSCicloud EU PCP project
Toward a (semi-)elastic Data Center?

- Planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)
- A complementary solution could be (dynamic) extension on remote farms
- Cloud bursting on commercial provider
 - Tests of opportunistic computing on Cloud providers
- Static allocation of remote resources
 - First production use case: part of 2016 pledged resources for WLCG experiments at CNAF are in Bari-ReCaS
- Also participating to HNSCicloud EU PCP project
Opportunistic computing on Aruba (1)

- One of the main Italian commercial resource providers
 - Web, host, mail, cloud ...
 - Main datacenter in Arezzo (near Florence, ~140 km from CNAF)
- Goal
 - Transparently use these external resources “as if they were” in the local cluster, and have LSF dispatching jobs there when available
- Small scale test
 - 10x8 cores VM (160 GHz) managed by VMWare
- Use of idle CPU cycles
 - When a customer requires a resource used by us, the frequency of CPU of “our” VMs is lowered down to a few MHz (not destroyed!)
- Tied to CMS-only specifications
 - No storage on site: remote data access via Xrootd
 - Use of GPN (no dedicated NREN infrastructure)
Opportunistic computing on Aruba (2)

- The remote VMs run the very same jobs delivered to CNAF by GlideinWMS (CMS)
 - Ad hoc configuration at GlideIN could specialize delivery for these resources
- Job efficiency (CPT/WCT) depends on type of job
 - very good for certain type of jobs (MC)
 - Low on average (0.49 vs. 0.80)
- Guaranteed network bandwidth and/or cache system could improve these figures
 - We foresee additional tests with a cache system
Remote extension to Bari ReCaS

- **48** WNs (~26 kHS06) and ~**330** TB of disk allocated to Tier-1 farm for WLCG experiments in Bari-ReCaS data center
 - Bari-ReCaS hosts a Tier-2 for CMS and Alice
- ~10% of CNAF total resources, ~13% of resources pledged to WLCG experiments
- Goal: direct and transparent access from CNAF
- Similar to CERN/Wigner extension
BARI – CNAF connectivity

- Requirement: link CNAF-ReCaS at least 10 Gbit/s for 1000 cores
- Bari-ReCaS WNs to be considered as on CNAF LAN
- VPN L3 configured
 - 2x10 Gb/s, MTU=9000
 - CNAF /22 subnet allocated to BARI WNs
- Also service networks (i.e. for WN management) accessible
- Routing through CNAF also for BARI WN
 - Including LHCONE, LHCOPN and GPN

Layout of CNAF-BARI VPN

Distance: ~600 Km
RTT: ~10 ms
BARI – CNAF connectivity

• Requirement:
 - Link CNAF - ReCaS at least 10 Gbit/s for 1000 cores
• Bari-Recas WNs to be considered as on CNAF LAN
• VPN L3 configured
 - 2x10 Gb/s, MTU=9000
 - CNAF/22 subnet allocated
 - Also service networks (i.e. for WN management) accessible
 - Routing through CNAF also for BARI WNs
 - Including LHCONE, LHCOPN and GPN

Traffic: L3VPN TIER1 INFN - Bari -- PoP Bari-Amendola [Day]

Commissioning tests

Input
- Max In: 19.82 Gbps
- Avg In: 15.06 Gbps
- Last In: 8.32 Gbps

Output
- Max Out: 19.43 Gbps
- Avg Out: 13.79 Gbps
- Last Out: 9.79 Gbps

Distance: ~600 Km
RTT: ~10 ms

12:01 pm 26/10/15
Farm extension setup

• Goal: transparent access from CNAF farm
 – Should be indistinguishable for users
• CNAF LSF master dispatches jobs also to Bari-ReCaS WNs
 – BARI WNs considered as local resources
• CEs (grid entry points for farm) at CNAF
• Auxiliary services installed in Bari-ReCaS
 • CVMFS Squid servers (for software distribution)
 • Frontier Squid servers (used by ATLAS and CMS for condition db)
Data Access

• Data at CNAF are organized in GPFS file-systems
 • Local access through Posix, Gridftp, Xrootd, and http
 • Remote fs mount from CNAF unfeasible (x100 RTT)
• Jobs expect to access data the same way as at CNAF
 • Not all experiments able to use a fallback protocol
• Local (@ Bari-ReCaS) Posix cache for data needed
 • Alice uses Xrootd only (no cache needed)
• Cache implemented with AFM (GPFS native feature)
Remote data access via GPFS AFM

• GPFS AFM
 • A cache providing geographic replica of a file system
 • Manages RW access to cache
• Two sides
 • Home - where the information lives
 • Cache
 • Data written to the cache is copied back to home as quickly as possible
 • Data is copied to the cache when requested
• AFM configured as RO for Bari-ReCaS
 • ~400 TB of cache vs. ~11 PB of data
• Several tunings and reconfigurations required!
• In any case decided to avoid submission of high throughput jobs in Bari (possible for Atlas)
AFM cache layout

Data access BARI-CNAF

ATLAS (ddn9900)
LHC (ddn10k)
CMS (ddn12k)

CNAF (DotHill)

LSF

LSFcNFS

Ds-001
Ds-002

cNFS-LHC

BARI

Cluster GPFS
Cluster cNFS

Cluster GPFS

Wn-ba

NFS-BA
Ds-ba-01
Ds-ba-02

NFS

LSF

ATLAS

LHC

CMS

GPFS

md38

330 TB

30 Oct 2016

Istituto Nazionale di Fisica Nucleare

CHEP 2016
Oct. 10 2016

Istituto Nazionale di Fisica Nucleare
Results: Bari-ReCaS (1)

- Several issues has been addressed
 - Mainly cache reconfiguration and tuning
- At steady state since June 2016
 - ~550 k production jobs (~8% CNAF)
Results: Bari-ReCaS (2)

- Job efficiency @ Bari-ReCaS equivalent (or even better!)
 - In general jobs at CNAF use WNs shared among several VO's
 - during the Summer one of these (non WLCG), with misconfigured jobs, has affected efficiency of all the other VO's
 - Atlas submits only low I/O jobs on Bari-ReCaS
 - Alice uses only XrootD, no cache
 - “intense” WAN usage also from CNAF jobs

- Network was not an issue
 - We could work w/o cache for data using Xrootd
 - But probably we would need more than 20 Gb/s
 - Anyway cache needed for some experiments

Experiment NJobs Efficiency

<table>
<thead>
<tr>
<th>Experiment</th>
<th>NJobs</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>105109</td>
<td>0.87</td>
</tr>
<tr>
<td>Atlas</td>
<td>366999</td>
<td>0.94</td>
</tr>
<tr>
<td>CMS</td>
<td>34626</td>
<td>0.80</td>
</tr>
<tr>
<td>LHCb</td>
<td>39310</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Job efficiency @BARI

Experiment NJobs Efficiency

<table>
<thead>
<tr>
<th>Experiment</th>
<th>NJobs</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>536361</td>
<td>0.86</td>
</tr>
<tr>
<td>Atlas</td>
<td>4956628</td>
<td>0.87</td>
</tr>
<tr>
<td>CMS</td>
<td>326891</td>
<td>0.76</td>
</tr>
<tr>
<td>LHCb</td>
<td>263376</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Job efficiency @CNAF

Efficiency = CPT/WCT
Conclusions

• INFN Tier-1 is fully addressing computing requirements from experiments in which INFN is involved
• We are planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)....
• ... but testing (elastic) extension of our Data center is important
 – Infrastructure could not scale indefinitely
 – External extensions could address other use cases such as temporary peak requests in a cheaper way than with flat deployment
Conclusions

• INFN Tier-1 is fully addressing computing requirements from experiments in which INFN is involved

• We are planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)....

• ... but testing (elastic) extension of our Data center is important
 – Infrastructure could not scale indefinitely
 – External extensions could address other use cases such as temporary peak requests in a cheaper way than with flat deployment

• The first results are more than promising ...

• ... but for a more general solution a cache system should be developed
Conclusions

• INFN Tier-1 is fully addressing computing requirements from experiments in which INFN is involved

• We are planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)....

• ... but testing (elastic) extension of our Data center is important
 – Infrastructure could not scale indefinitely
 – External extensions could address other use cases such as temporary peak requests in a cheaper way than with flat deployment

• The first results are more than promising ...

• ... but for a general solution a cache system should be developed
Backup slides
HNSciCloud

• EU Project (call ICT 8a di H2020)
 – Approved (September 2015)
• “Pre-Commercial Procurement” to lease IaaS cloud services
 – 2/3 of funding from EU
• Goal: realize a prototype of “hybrid cloud” with commercial providers covering ~5% of all WLCG resources
• Involved CERN, most of EU Tier-1s, DESY, EGI, EMBL
• Still in the phase of writing the technical specifications for the tender.
 – Non negligible administrative effort ☹
Dynfarm concepts

• The VM at boot connects to a OpenVPN based service at CNAF
 • It authenticates the connection (RSA)
 • Delivers parameters to setup a tunnel with (only) the required services at CNAF (LSF, CEs, Argus)
 • Routes are defined on each server to the private IPs of the VMs (GRE Tunnels)
 • Other traffic flows through general network
Dynfarm deployment

• VPN Server side, two RPMs:
 • dynfarm-server, dynfarm-client-server
 • In the VPN server at CNAF. First install creates one dynfarm_cred.rpm which must be present in the VMs

• VM side, two RPMs:
 • dynfarm_client, dynfarm_cred (contains keys to initiate connection and get authenticated by the VPN Server)

• Management: remote_control <cmd> <args>
Dynfarm workflow
Auxiliary services

- Cache system for other services to offload network link and speed-up response
 - CVMFS Squid servers (for software distribution)
 - Frontier Squid servers (used by ATLAS and CMS for condition db)
- Dedicated DNS servers at BARI
 - Offer different view to WNs respect to CNAF for application specific servers (e.g. Frontier squids)

[root@ba-3-8-01 ~]# host squid-lhc-01
squid-lhc-01.cr.cnaf.infn.it has address 131.154.152.38

[root@wn-206-08-21-03-a ~]# host squid-lhc-01
squid-lhc-01.cr.cnaf.infn.it has address 131.154.128.23
AFM deployment

- Cache storage GPFS/AFM
 - 2 server, 10 Gbit
 - 120 TB → 330 TB (Atlas, CMS, LHCb) as cache for data
- Alice experiment does not need cache
 - Remote Xrootd access to data in any case
- CMS able to fallback to Xrootd protocol in case of posix access failure
- (Small) AFM cache also for LSF shared fs
 - Decoupled from the cache for data to avoid interferences due to I/O intensive jobs

ba-3-x-y: Feb 8 22:56:51 ba-3-9-18 kernel: nfs: server nfs-ba.cr.cnaf.infn.it not responding, timed out
Cache issues

- Local cache access critical
 - Potential bottleneck
- First "incarnation" of cache
 - 120 TB of net disk space
 - Max 1 GB/s r or w
 - Concurrent r/w degrade performances to 100 MB/s
- 20 TB-N/experiment
 - CMS fills space in 12h
 - Atlas, LHCb use only 10% of the space
- Very low efficiency for CMS jobs
 - Emergency solution: disable cache access
 - Xrootd fallback
Cache tuning (1)

- Enlargement of data cache (from 120 to 330 TB-N)
 - ~100 TB-N per experiment
 - > 50 TB-N CMS can easily accommodate datasets to be reprocessed
 - Avoid pass-through effect

- ... but performance limits still present
 - Increase of number of disks does not help in this case

- Investigation on GPFS/AFM configuration
Cache tuning (2)

- GPFS optimization normally based on supposition that 1 RAIDset = 1 LU and is done on LU level
 - In our case 1 RAIDset contains 12 LU
 - we needed to lower number of processes (threads) working with each LU by factor of 10.
- Increase of fs block size from 1MB to 4MB has reduced I/O operations to get same throughput (and also reduced concurrent I/O on a specific RAIDset)
Other issues

• Too high # of cores
 – An hw problem on a single WN affects up to 64 jobs
 – Mean job duration time: 3 days
 – Can cost 100 days of wasted CPU time

• I/O load on WN local disk
 – Due to large number of independent processes this can cause latency to access the local disks and hence be a bottleneck

• Suspect occasional problems with the power supplies
 – Too much power needed when WN fully loaded? Still unclear…
Preliminary conclusions

• Several issues has been addressed
 – Not at steady state yet
 – We need to gain more experience to understand limits

• Network was not an issue 😊
 – We could work w/o cache for data using Xrootd
 • But (probably) we would need more than 20 Gb/s
 – Anyway cache needed for some experiments
Preliminary conclusions

• Several issues has been addressed
 – Not at steady state yet
 – We need to gain more experience to understand limits
• Network was not an issue 😊
 – We could work w/o cache for data using Xrootd
 • But probably we would need more than 20 Gb/s
 – Anyway cache needed for some experiments
• Is this model convenient?
 – Not clear....
 • Need to quantify costs due to efficiency loss, network etc...
The use-case

- Agreement CNAF - Aruba
 - Aruba has provided a small amount of Virtual resources (CPU cycles, RAM, DISK) out of a pool assigned to real customers
 - 10x8 cores VM (160 GHz) managed by VMWare
 - When a customer requires a resource used by us, the frequency of CPU of “our” VMs is lowered down to a few MHz (not destroyed!)

- Goal
 - Transparently join these external resources “as if they were” in the local cluster, and have LSF dispatching jobs there when available
 - Tied to CMS-only specifications
 - No data caching (hence Xrootd fallback)
Some configuration issues

- Remote Virtual WNs need read-only access to the cluster shared fs (/usr/share/lsf)
 - Use of GPFS/AFM cache as in Bari
- VMs have private IP, are behind NAT & FW, outbound connectivity only, but have to be reachable by LSF
 - Developed an ad hoc service at CNAF (dynfarm) to provide integration between LSF and virtualized computing resources
- LSF needs host resolution (IP ↔ hostname) but no DNS available for such hosts
 - Manually fixed in /etc/hosts
- Use of GPN (no dedicated link)
 - No problem for a small scale test-bed
“Comparative” Results

<table>
<thead>
<tr>
<th>Queue</th>
<th>Nodetype</th>
<th>Njobs</th>
<th>Avg_eff</th>
<th>Max_eff</th>
<th>Avg_wct</th>
<th>Avg_cpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cms_mc</td>
<td>AR</td>
<td>2984</td>
<td>0.602</td>
<td>0.912</td>
<td>199,805</td>
<td>130,482</td>
</tr>
<tr>
<td>Alice</td>
<td>T1</td>
<td>98451</td>
<td>0.848</td>
<td>0.953</td>
<td>16,433</td>
<td>13,942</td>
</tr>
<tr>
<td>Atlas_sc</td>
<td>T1</td>
<td>1211890</td>
<td>0.922</td>
<td>0.972</td>
<td>1,247</td>
<td>1,153</td>
</tr>
<tr>
<td>Cms_mc</td>
<td>T1</td>
<td>41412</td>
<td>0.707</td>
<td>0.926</td>
<td>117,296</td>
<td>93,203</td>
</tr>
<tr>
<td>Lhcb</td>
<td>T1</td>
<td>102008</td>
<td>0.960</td>
<td>0.985</td>
<td>23,593</td>
<td>22,631</td>
</tr>
<tr>
<td>Atlas_mc</td>
<td>T1</td>
<td>38157</td>
<td>0.803</td>
<td>0.988</td>
<td>19,289</td>
<td>18,239</td>
</tr>
<tr>
<td>Alice</td>
<td>BA</td>
<td>25492</td>
<td>0.725</td>
<td>0.966</td>
<td>14,446</td>
<td>10,592</td>
</tr>
<tr>
<td>Atlas</td>
<td>BA</td>
<td>15263</td>
<td>0.738</td>
<td>0.979</td>
<td>1,439</td>
<td>1,077</td>
</tr>
<tr>
<td>Cms_mcore</td>
<td>BA</td>
<td>2261</td>
<td>0.444</td>
<td>0.805</td>
<td>146,952</td>
<td>69,735</td>
</tr>
<tr>
<td>Lhcb</td>
<td>BA</td>
<td>13873</td>
<td>0.916</td>
<td>0.967</td>
<td>12,998</td>
<td>11,013</td>
</tr>
<tr>
<td>Mcore</td>
<td>BA</td>
<td>20268</td>
<td>0.685</td>
<td>0.878</td>
<td>24,378</td>
<td>15,658</td>
</tr>
</tbody>
</table>
“Comparative” Results

<table>
<thead>
<tr>
<th>Queue</th>
<th>Nodetype</th>
<th>Njobs</th>
<th>Avg_eff</th>
<th>Max_eff</th>
<th>Avg_wct</th>
<th>Avg_cpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cms_mc</td>
<td>AR</td>
<td>2984</td>
<td>0.602</td>
<td>0.912</td>
<td>199,805</td>
<td>130,482</td>
</tr>
<tr>
<td>Alice</td>
<td>T1</td>
<td>98451</td>
<td>0.848</td>
<td>0.953</td>
<td>16,433</td>
<td>13,942</td>
</tr>
<tr>
<td>Atlas_sc</td>
<td>T1</td>
<td>1211890</td>
<td>0.922</td>
<td>0.972</td>
<td>1,247</td>
<td>1,153</td>
</tr>
<tr>
<td>Lhcb</td>
<td>T1</td>
<td>41412</td>
<td>0.707</td>
<td>0.926</td>
<td>117,296</td>
<td>93,203</td>
</tr>
<tr>
<td>Cms_mc</td>
<td>T1</td>
<td>41412</td>
<td>0.707</td>
<td>0.926</td>
<td>117,296</td>
<td>93,203</td>
</tr>
<tr>
<td>Lhcb</td>
<td>BA</td>
<td>25</td>
<td>0.966</td>
<td>14,446</td>
<td>10,592</td>
<td></td>
</tr>
<tr>
<td>Atlas</td>
<td>BA</td>
<td>0,738</td>
<td>0,979</td>
<td>1,439</td>
<td>1,077</td>
<td></td>
</tr>
<tr>
<td>Cms_mcore</td>
<td>BA</td>
<td>0,444</td>
<td>0,805</td>
<td>146,952</td>
<td>69,735</td>
<td></td>
</tr>
<tr>
<td>Lhcb</td>
<td>BA</td>
<td>13873</td>
<td>0,916</td>
<td>0,967</td>
<td>12,998</td>
<td>11,013</td>
</tr>
<tr>
<td>Mcore</td>
<td>BA</td>
<td>20268</td>
<td>0,685</td>
<td>0,878</td>
<td>24,378</td>
<td>15,658</td>
</tr>
</tbody>
</table>

WARNING:

Unfair comparison: not homogeneous sets of observed jobs.
Remote extension to Bari ReCaS

- **48** WNs (~26 kHS06) and ~**330** TB of disk allocated to Tier-1 farm for WLCG experiments
 - 64 cores per mb (546 HS06/WN)
 - 1 core/1 slot, 4GB/slot, 8,53 HS06/slot
- ~**10%** of CNAF total resources, ~**13%** of resources pledged to WLCG experiments
- **Goal:** direct and transparent access from CNAF
- **Similar to CERN/Wigner extension**
The Bari ReCaS Data Center

- Common effort of INFN and Università degli Studi di Bari “Aldo Moro”
- Active from July 2015
 - 128 WNs, 8192 (+4000 the old data center) computing slots, ~100k HS06
 - Small HPC Cluster (800 cores) with IBA
 - 3.6 PB SAN of disk space, 2.5 PB of space on tape library
 - INFN quota (~25 kHS06, 1.1 PB of disk) allocated to CMS and Alice Tier-2