Cloud Environment Automation: from infrastructure deployment to application monitoring

Cristina Aiftimiei, Alessandro Costantini, Diego Michelotto et al.
INFN-CNAF, IT
{cristina.aiftimiei, alessandro.costantini, diego.michelotto}@cnaf.infn.it
Overview

• Open City Platform (OCP) project
• OCP platforms’ architecture
• OCP IaaS installation scenarios and Automation
• OCPs Cloud Environment Automation Architecture
• Conclusion & Future Work
OpenCityPlatform (OCP) project

- **Industrial research project**
 - Funded by the Italian Ministry of University and Research (MIUR)
 - Started in 2014
 - Duration 42 months (1 Jan. 2014 – 30 June 2017)
 - Participants
 - 7 partners
 - 20 beneficiaries
 - 2 Universities/research institutes
 - 3 big private companies
- Project intends to research, develop and test
 - **new technology solutions**
 - open,
 - interoperable and usable on-demand on the Cloud,
 - **innovative organizational models**
 - sustainable over time
 - **delivery of services**
 - from Local Government and Regional Administrations to Citizens and Companies
Overview

• Open City Platform (OCP) project
• **OCP platforms’ architecture**
 • OCP IaaS installation scenarios and Automation
 • OCPs Cloud Environment Automation Architecture
 • Conclusion & Future Work
OCP platforms’ architecture

Amministrazione | Sviluppo servizi ed applicazioni | Fruizione servizi, applicazioni e gestione

IaaS / PaaS Management Portal

App store

Citizen’s Marketplace

Reusable components

Open Data Services

TOSCA enabled interface

OCP Platform engine

iPaaS integration Layer

TOSCA/AWS IaaS adapter layer

Open Data Layer

TOSCAAWS PaaS adapter layer

TOSCA/AWS Commercial IaaS adapter layer

API

Recipe HEAT/TOSCA

API

Openstack Native API

API

API

API

Microsoft/VMWARE Native API

IAAS resources management

Abstraction Layer: KVM, XEN, CEPH, Gluster FS, Open VSwitch

Physical Environment (Infrastructure, HW, network)
OCP platforms’ architecture – IaaS layer

- **IaaS layer**
 - Amministrazione
 - Sviluppo servizi ed applicazioni
 - Fruizione servizi, applicazioni e gestione

- **App store**
 - Citizen’s Marketplace
 - Reusable components
 - Open Data Services

- **TOSCA enabled interface**
 - OCP Platform engine

- **iPaaS integration Layer**
 - TOSCA/AWS
 - IaaS adapter layer
 - API
 - Recipe
 - HEAT/TOSCA

- **Open Data Layer**
 - Open data engine
 - ckan

- **PaaS adapter layer**
 - TOSCA/APPWS
 - OCP Platform engine

- **Commercial IaaS adapter layer**
 - Microsoft/VMWARE
 - Native API

- **Abstraction Layer**
 - KVM, XEN, CEPH, Gluster FS, Open VSwitch
 - Physical Environment (Infrastructure, HW, network)
Overview

• Open City Platform (OCP) project
• OCP platforms’ architecture
• **OCP IaaS installation scenarios and Automation**
• OCPs Cloud Environment Automation Architecture
• Conclusion & Future Work
IaaS installation scenarios

• **Manual installation and configuration (“hardcore”)**
 • **Pros**
 • better understanding of OpenStack dependencies between components
 • more control over configurations
 • **Cons**
 • requires basic knowledge of Linux OS, bash and network configuration
 • error-prone and time-consuming

• **Full-automated installation via Fuel**
 • **Pros**
 • Easy installation through the graphical interface
 • Enables subsequent changes and new deployments
 • **Cons**
 • Initial configuration cannot be changed
 • Custom configuration difficult to be applied.
“Automation make it better”

- A semi-automatic installation method
 - Designed to take the advantages of the methods presented
 - More control over configurations
 - Easy installation through the graphical interface
 - Flexible
 - to meet the architectural requirements of Data Centers

- Leverage on automation tools
 - Foreman and Puppet
Automation Tools

• Puppet
 • Framework open source for the management and configuration of ICT systems
 • Roles and profiles model
 • based on a similar module of Quentin Machu
 • Profiles: technology-specific wrapper classes
 • Database, Horizon, Keepalived, Nova-compute, ...
 • Roles: business-specific wrapper classes
 • Every node is classified with one role!

• Foreman
 • Framework for the lifecycle management of virtual and physical server
 • Rapid deployment of services and applications
 • Easy automation of repetitive actions
 • Proactive Management of servers
Overview

• Open City Platform (OCP) project
• OCP platforms’ architecture
• OCP IaaS installation scenarios and Automation

• **OCPs Cloud Environment Automation Architecture**
• Conclusion & Future Work
Cloud Environment Automation Architecture

Master Node – Configuration Management & Monitoring

- CM
 - Foreman
 - Puppet
 - DNS

- Monitoring
 - Zabbix

Node01,02,03 – Services (RHMK)

- HAProxy
- Keepalived
- Percona/MySQL
- RabbitMQ
- MongoDB
- Zookeeper

Node07,08 – Controller

- IDENTITY
 - Keystone

- DASHBOARD
 - Horizon

- IMAGE
 - Glance

- TELEMETRY
 - Ceilometer

- BLOCK STORAGE
 - Cinder

Node09,10 – Network

- NETWORKING
 - Neutron agents

- COMPUTE
 - Nova

Node11,12 – Compute

- COMPUTE
 - Nova compute

- NETWORKING
 - Neutron ovs agents

Node04,05,06 – CEPH

- Distributed FS
 - Ceph
Network Architecture
Overview

• Open City Platform (OCP) project
• OCP platforms’ architecture
• OCP IaaS installation scenarios and Automation
• OCPs Cloud Environment Automation Architecture

• Conclusion & Future Work
Conclusions & Future Work

• Cloud Environment Automation
 • A new semi-automatic method for IaaS installation and configuration
 • Developed in the OCP industrial research project
 • Addresses the different requirements and realities
 • Flexible IaaS configuration and management
 • High Availability and Network management support
 • Ceph adopted as block and object storage backend
 • Fine grain variable configuration
 • Graphical User Interface support
Conclusions & Future Work

• New Features
 • Full support to the OpenStack Identity API v3
 • Automatic upgrade of the OCP-IaaS layer to a new OpenStack version
 • Automatic methods and tools for the installation and configuration of the PaaS layer
 • CloudFormation as a Service