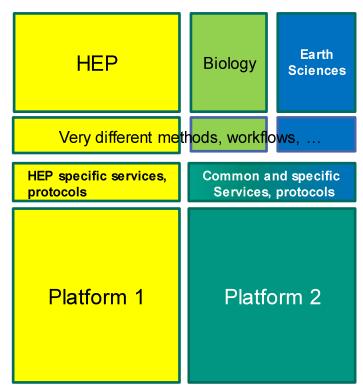
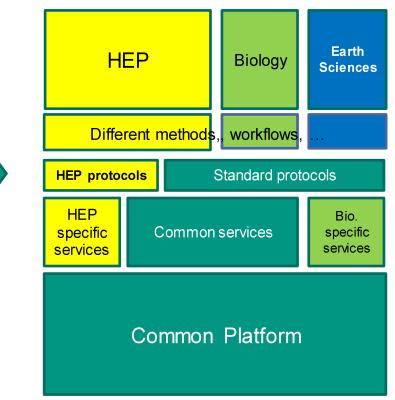


Developing the WLCG Tier-1 center GridKa as topical center in a multidisciplinary research environment

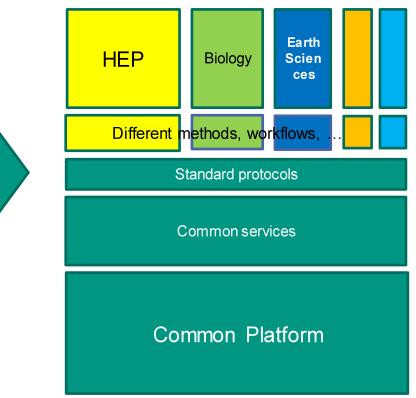

andreas.heiss@kit.edu, andreas.petzold@kit.edu

Motivation

Karlsruhe Institute of Technology


- Flat budgets, increasing costs for energy, personnel, ...
- Increasing competition by commercial cloud providers
- HEP computing requirements (# PBs etc.) not unique any more. Other fields of research catching up.
- Funding agencies hesitant to fund HEP specific computing infrastructures and push for more cooperation between different research fields.
 - => National and EC funded projects and infrastructures

Motivation


- Flat budgets, increasing costs for energy, personnel, ...
- Increasing competition by commercial cloud providers
- HEP computing requirements (# PBs etc.) not unique any more. Other fields of research catching up.
- Funding agencies hesitant to fund HEP specific computing infrastructures and push for more cooperation between different research fields.
 - => National and EC funded projects and infrastructures

Motivation

- Flat budgets, increasing costs for energy, personnel, ...
- Increasing competition by commercial cloud providers
- HEP computing requirements (# PBs etc.) not unique any more. Other fields of research catching up.
- Funding agencies hesitant to fund HEP specific computing infrastructures and push for more cooperation between different research fields.
 - National and EC funded projects and infrastructures

KIT data center for High Energy Physics

Started in 2003 as a (Grid) computing center for High Energy Physics

- Today among the largest WLCG Tier-1 centers, providing ~15% of the total WLCG Tier-1 resources.
 - 2016: 11k CPU cores (168 kHS'06), 16 PB disk, 20 PB tape
 - The cornerstone of "Big Data" research and infrastructures at KIT (and Helmholtz)
 - => Helmholtz research program "Supercomputing and BigData" at KIT
 - => Large Scale Data Facility at KIT

Large Scale Data Facility @ KIT

- Started 2008 with a 150 TB storage system to provide central storage for KIT researchers
 - High throughput microscopy
 - Climate research
 - Synchrotron radiation techniques (imaging, spectroscopy, ...)
- 2009: First KIT-external research group uses LSDF
- **2016**:
 - > 5 PB disk and > 6 PB tape storage and growing
 - Additional storage services for various users (groups) within the state of Baden-Württemberg and beyond.

- Until 2013: Different teams, methods, tools, systems
- Since 2013:
 - Operations manager responsible for GridKa and LSDF
 - Common personnel (for certain systems and services, where reasonable)
 - Similar working procedures
 - Common operations tools
 - Common infrastructures

- Starting 2016 / 2017
 - One funding source
 - Common procurements
 - Similar systems (later: common systems)

- Operations and expert knowledge shared between larger number of people
- Consolidation allows for more staff for community support and R&D
- Profit from economy of scale

LSDF.

16PB disk

GridKa compute farm

See CHEP talk #400:

T. Hauth, "On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers" Wed. 12:30 pm Track 3

56 node

- Interactive nodes
- NFS to HPC systems

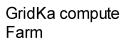
2017 2018 long-term

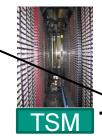
Similar storage hardware GPFS as 'virtualisation layer' (common procurement)

Common HPSS tape backend

Further common services: AAI, data management, ... HDF

20+ PB disk


- GPFS
- 2017 pledge increase
- Replacement of old systems


ForHLR Petaflop-System

-PoC: Extension to cloud

2017 2018

GPFS as 'virtualisation layer'

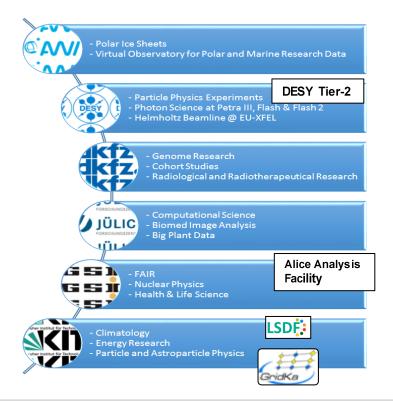
Common HPSS tape backend

long-term

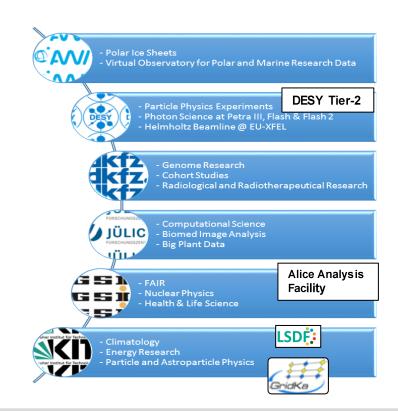
Common storage system Common services, AAI etc. HDF

~25+PB disk - GPFS

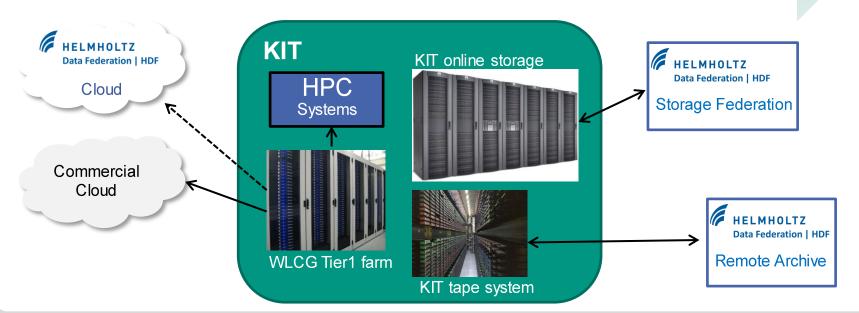
ForHLR Petaflop-System

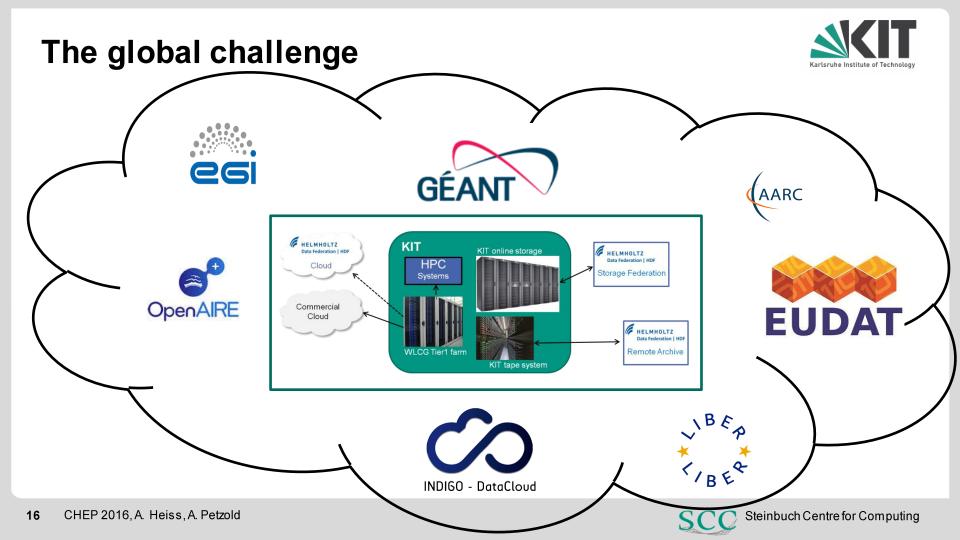


GridKa compute


- Federated research data infrastructure for Germany.
- Funding of data and computing infrastructure at 6 centers in 2017 - 2021
 - Includes (significant part of) funding of the WLCG Tier-1 resources at KIT

- Planned services include:
 - Common AAI
 - Data transfer
 - Backup and archival
 - Software distribution
 - Metadata services
 - Compute cloud
 - Storage federation
- Addressing community-specific requirements




2017 2018 long-term

Similar storage hardware GPFS as 'virtualisation layer' (common procurement)

Common HPSS tape backend

Common storage system Common services, AAI etc. HDF

Conclusion

- Two main challenges:
 - Need to become more efficient and profit from the economy of scale
 - Integration of KIT data infrastructures
 - Rapidly changing global computing landscape
 - Many projects aiming to increase interoperability and establish common standards (EOSC, various EU funded projects)
 - Heterogeneous infrastructures
 - Own farms, clusters, clouds
 - Commercial clouds
 - HPC systems