
Using container orchestration to improve service 
management at the RAL Tier 1

Andrew	Lahiff,	Ian	Collier	
Rutherford	Appleton	Laboratory	

	

	
	

10th	October,	CHEP	2016,	San	Francisco	



Overview
•  MoGvaGon	&	goals	
•  Apache	Mesos	
•  Marathon	
•  Image	creaGon		&	storage	
•  Metrics	&	logging	
•  Service	discovery	
•  Example	
•  Summary	&	future	plans	

1



Motivation
•  UK	Tier-1	facility	at	RAL	

–  provides	resources	to	all	4	LHC	experiments,	many	non-LHC	experiments	
–  also	provides	resources	to	local	faciliGes,	e.g.	Diamond	Light	Source,	ISIS	Neutron	

&	Muon	Source	
•  Changing	landscape	

–  LHC	resource	requirements	increasing	in	size	
–  broadening	user	base	of	the	Tier-1	
–  non-LHC	experiments	&	local	faciliGes	becoming	more	important	

•  allocaGon	expected	to	exceed	UK	contribuGon	to	the	LHC	in	coming	years	
–  staff	effort	unlikely	to	increase	&	in	fact	will	probably	decrease	

•  Important	to	invesGgate	ways	of	managing	exisGng	services	&	potenGally	provide	more	
services	with	less	effort	

2



How do we run services?
•  Aquilon	(Qua[or)	for	configuraGon	management	
•  Services	run	on	enterprise	virtualizaGon	pla^orms	or	in	some	cases	bare	metal	
•  Significant	amount	of	manual	work	involved	for	both	deployment	&	upgrades,	also:	

–  manual	intervenGon	is	required	to	resolve	problems	
•  many	Nagios	tests	but	at	most	they	result	in	emails	or	pager	alarms	

–  very	staGc	environment	
•  many	manual	steps	in	order	to	scale	horizontally	

–  problem	with	VM	or	hypervisor	results	in	loss	of	service	
•  recent	improvement	due	to	use	of	shared	storage	under	hypervisors	

–  dead	machines	visible	to	users	due	to	use	of	staGc	DNS	aliases	
•  started	to	use	load	balancers	to	get	around	this	(only	FTS3	so	far)	

•  Very	li[le	has	changed	in	the	past	6	years	or	more	

3



Goals
•  Ideally	would	like	to	have	an	environment	where	

–  The	infrastructure	itself	is	
•  felixible	
•  fault-tolerant	
•  scalable	

–  Services	are	
•  quickly	&	easily	deployable,	easily	updated	
•  self-healing	
•  elasGc,	auto-scaling	
•  mulG-tenant	

•  Looking	at	what’s	happening	in	the	wider	world,	one	way	to	do	this	is	to	
–  migrate	to	running	applicaGons	in	containers	
–  manage	the	containers	using	schedulers,	not	people	

•  This	is	a	very	significant	change	in	the	way	we	manage	services	
4



Apache Mesos
•  Originated	in	UC	Berkeley	in	2011	&	became	a	Top	Level	Project	at	Apache	in	2013	
•  Mesos	is	a	cluster	manager	which	

–  enables	a	large	group	of	machines	to	appear	as	a	single	pool	of	resources	
–  allows	you	to	have	mulGple	schedulers	sharing	the	same	resources	

Framework A

LEADER

STANDBY STANDBY

Scheduler

Framework B

Scheduler

Mesos Master quorum

ZK

ZK ZK

Master

Master Master

OFFER

OFFER

Framework A

TASK

Executor

Agent 1

Framework B

TASK

Executor

Agent N

...

5

Mesos agents provide
resources to the Mesos
master

Mesos master offers
resources to frameworks

Frameworks decide what
offers to accept & what to
do with them



Marathon
•  A	Mesos	framework	for	long-running	services	

–  applicaGons	&	groups	of	applicaGons	with	dependencies	
–  health	checks	

Self-healing (no more 2am pager alarms)

Rolling upgrades
Application killed

Each colour represents a task (instance of an application)

Benefits include

Mesos agent shutdown

6



Deployment at RAL
•  Mesos	agents	

–  164	x	32	cores,	84	x	16	cores	(all	bare	metal)	
–  Mesos	agent,	Docker	engine,	Consul	agent	

•  Mesos	masters	
–  5	VMs	(4	cores,	8	GB	memory	each)	

•  can	lose	up	to	2	hosts	without	any	problems	

–  Mesos	master,	ZooKeeper,	Marathon,	Consul	server	
•  Some	experiences	

–  CPU	&	memory	usage	on	the	Mesos	masters	is	low	
•  Consul	biggest	user	of	CPU	

–  Disk	i/o	important	for	ZooKeeper	
•  2	of	our	3	virtualizaGon	pla^orms	don’t	quite	have	fast	

enough	disk	storage	

Number of cores in cluster

Memory (summed across masters)

CPU (summed across masters)



•  Distributed	private	Docker	registry	
–  Ceph	storage	backend	via	Swij	gateway	
–  central	registry	instance	providing	write	access	
–  read-only	registry	on	every	Mesos	agent	

•  lightweight	
•  avoids	having	a	single	point	of	failure	/	bo[leneck	

•  CreaGng	images	
–  currently	creaGng	images	“by	hand”	from	Dockerfiles	
–  work	in	progress	on	leveraging	Packer	to	build	VM	&	container	images	from	our	

configuraGon	management	system	(Aquilon)	

Image creation & storage

Aquilon Packer

Docker registry

OpenStack 
Glance

vulnerability 
analysishook

Memory usage of registry container on each agent

hook

8



Metrics & logging
•  TradiGonal	monitoring	is	host-centric	&	assumes	staGc	infrastructure	

–  not	suitable	for	a	dynamic	containerized	environment	
–  no	staGc	hostnames	or	IP	addresses	&	number	of	instances	can	change	

•  Use	metadata	to	dynamically	aggregate	metrics	&	logs	
–  e.g.	applicaGon	name	rather	than	hostname	

•  Metrics	
–  Telegraf:	collecGng	infrastructure	metrics	(input	plugins	for	Mesos,	ZooKeeper,	...)	
–  cAdvisor:	collecGng	container	metrics	(resource	usage,	applicaGon	metrics)	
–  InfluxDB,	Grafana	

•  Logging	
–  centralized	is	logging	important:	applicaGons	can	move	around	
–  Filebeat	(stdout/err	from	containers,	Mesos	logs,	...)	
–  Logstash,	ElasGcsearch,	Kibana	

9



Service discovery
•  StaGc	hostnames	in	configuraGon	files	no	longer	make	sense	
•  Using	Consul,	a	distributed	tool	for	service	discovery	

•  Containers	exposing	ports	are	automaGcally	registered	in	
Consul	

•  Within	the	Mesos	cluster	
–  Services	can	be	accessed	in	several	ways,	including	DNS,	e.g.	

•  logstash.service.consul	
•  External	access	to	services	in	the	Mesos	cluster	

–  Pairs	of	load	balancers	
•  HAProxy	(load	balancing)	
•  Keepalived	(HA	floaGng	IP	addresses)	

–  ConfiguraGon	dynamically	updated	by	Consul	
•  It’s	possible	to	setup	HAProxy	for	zero-downGme	reloads	

10



Example: worker nodes
•  InvesGgaGng	the	ability	to	run	HTCondor	worker	nodes	on	Mesos	

–  ExisGng	producGon	HTCondor	central	managers	&	ARC	CEs	
–  Running	on	Mesos	

•  worker	nodes	
•  squids	

•  Container	management	
–  Marathon	for	squids	

•  autoscaling	based	on	request	rate	
–  A	custom	framework	for	worker	nodes	

•  creates	worker	node	containers	as	needed	
•  Why	not	Marathon?	Need	to	be	able	to	scale	down	&	perform	rolling	

upgrades	without	killing	jobs	
•  Marathon	&	the	custom	framework	registered	in	Mesos	as	different	roles	

–  can	ensure	that	worker	nodes	can’t	take	over	enGre	cluster	 11



Worker nodes
•  CVMFS	&	condor_startd	inside	the	container	

–  host	doesn’t	need	anything	at	all	related	to	worker	nodes	installed	
–  allows	us	to	run	as	many	worker	nodes	as	required	without	having	to	dedicate	a	

set	of	resources	configured	as	“WLCG	worker	nodes”	
•  Each	job	

–  runs	in	it’s	own	CPU	&	memory	cgroups	nested	in	the	worker	node	container	
–  has	it’s	own	PID	&	mount	namespace	

•  Container	exits	if	there	has	been	no	work	for	a	specified	duraGon	

condor_startd
job

slot@1_1

worker node container ...

CVMFS

/sys/fs/cgroup/cpu/docker

/<wn docker id>

/htcondor

/condor_slot1_1

/condor_slot1_2
...

cgroup hierarchy

job
slot@1_2

12



Worker nodes
•  Example	of	recent	tests	with	real	jobs	from	all	4	LHC	experiments	

HTCondor startd ClassAds contain details such as
Mesos task ID & image name which are automatically 
added to job ClassAds for traceability

Each new squid automatically
starts receiving traffic after
being created

Appliication metrics collected
by cAdvisor

Each colour correpsonds to a
task (instance of an application)

13



Auto-scaling
•  Example	of	the	number	of	squid	instances	changing	based	on	load	(request	rate)	

Spike in request rate triggers
creation of additional squid instances

Drop in request rate therefore number of
squid instances is reduced Squid caches warming up

14



Summary & future plans
•  The	use	of	containers	&	container	orchestraGon	seems	to	have	many	benefits	

compared	to	our	exisGng	infrastructure	
–  potenGally	higher	availability	with	less	effort	&	higher	resource	uGlizaGon	

•  Status	of	Mesos	at	RAL	
–  used	for	tesGng	&	development;	some	non-criGcal	internal	services;	a	small	

fracGon	of	batch	jobs	
–  not	yet	an	“official”	producGon	service	

•  it’s	a	significant	change	in	philosophy	
•  the	Tier-1	facility	at	RAL	has	to	meet	high	SLAs,	so	moving	away	from	a	well-

established	infrastructure	takes	Gme	
–  technologies	iniGally	looked	at	as	part	of	the	work	on	Mesos	now	being	used	more	

widely	within	the	RAL	Tier-1	
•  Keepalived	&	HAProxy	used	in	producGon	in	front	of	FTS3	for	>	6	months	
•  Telegraf,	InfluxDB	&	Grafana	now	monitoring	over	900	hosts	

15



Summary & future plans
•  Future	plans	include	

–  increased	integraGon	with	our	configuraGon	management	system	
•  move	to	using	images	created	by	Packer	from	configuraGon	in	Aquilon	

–  using	Ceph	to	allow	containers	to	have	persistent	storage	
–  invesGgate	running	OpenStack	hypervisors	in	containers	

•  will	allow	us	to	have	cloud	&	batch	sharing	the	same	resources	
–  contribuGons	to	INDIGO-DataCloud	
	

16



	
	
	

QuesGons?	

17


